Nothing
library(GeneNetworkBuilder) library(simpIntLists) library(knitr) library(STRINGdb)
library(GeneNetworkBuilder) library(simpIntLists) i <- findInteractionList("human", "Official") i <- lapply(i, function(.ele) cbind(from=as.character(.ele$name), to=as.character(.ele$interactors))) i <- do.call(rbind, i) set.seed(123) ## generate a random ChIP-seq binding table rootgene <- sample(i[, 1], 1) TFbindingTable <- i[i[, 1] == rootgene, ] interactionmap <- i # build network sifNetwork<-buildNetwork(TFbindingTable=TFbindingTable, interactionmap=interactionmap, level=2) ID=unique(as.character(sifNetwork)) ## create a random expression data expressionData <- data.frame(ID=ID, logFC=sample(-3:3, length(ID), replace=TRUE), P.Value=runif(n=length(ID), max=0.25)) ## filter network cifNetwork<-filterNetwork(rootgene=rootgene, sifNetwork=sifNetwork, exprsData=expressionData, mergeBy="ID", miRNAlist=character(0), tolerance=1, cutoffPVal=0.01, cutoffLFC=1) ## polish network gR<-polishNetwork(cifNetwork) ## browse network browseNetwork(gR)
try({ ## just in case STRINGdb not work library(STRINGdb) string_db <- STRINGdb$new( version="10", species=9606, score_threshold=400) data(diff_exp_example1) example1_mapped <- string_db$map( diff_exp_example1, "gene", removeUnmappedRows = TRUE ) i <- string_db$get_interactions(example1_mapped$STRING_id) rootgene <- sample(i[, 1], 1) # random set a rootgene. It should be set by your experiment. TFbindingTable <- i[i[, 1] == rootgene, c("from", "to")] interactionmap <- i[, c("from", "to")] sifNetwork<-buildNetwork(TFbindingTable=TFbindingTable, interactionmap=interactionmap, level=2) ## filter network colnames(example1_mapped) <- c("gene", "P.Value", "logFC", "symbols") ## unique expression data by symbols column expressionData <- uniqueExprsData(example1_mapped, method = 'Max', condenseName = "logFC") ## merge binding table with expression data by symbols column cifNetwork<-filterNetwork(rootgene=rootgene, sifNetwork=sifNetwork, exprsData=expressionData, mergeBy="symbols", miRNAlist=character(0), tolerance=1, cutoffPVal=0.01, cutoffLFC=1) ## convert the id back to symbol IDsMap <- expressionData$gene names(IDsMap) <- expressionData$symbols cifNetwork <- convertID(cifNetwork, IDsMap) ## polish network gR<-polishNetwork(cifNetwork) ## browse network browseNetwork(gR) })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.