Nothing
preselection_nopc <- function(Y,X,number_cores,frequentist,controlrate,threshold,nullprob,alterprob,kinship = FALSE){
# These lines need to be run, this essentially cleans the data set
requireNamespace("parallel")
####################
original_n <- ncol(X)
Xy <- cbind(Y,X)
y1 <- c("y",paste0("SNP",1:ncol(X)))
colnames(Xy) <- y1
y1 <- y1[y1 %in% paste0("SNP",1:ncol(X))]
X <- as.matrix(Xy[,y1])
Y <- matrix(Xy[,1],ncol = 1)
rm(Xy)
P <- 2
##################
if(is.logical(kinship)){
#Simple Linear Regression
nX <- nrow(X)
SNPdata_list <- split(t(X),1:ncol(X))
rm(X)
if(.Platform$OS.type == "unix"){
SNPdata_list <- mclapply(SNPdata_list,SNP_data_function_nopcp,mc.cores = number_cores,int = 1)
} else{
cl <- makeCluster(number_cores)
clusterExport(cl,c("SNPdata_list","SNP_data_function_nopcp"),envir=environment())
SNPdata_list <- parLapply(cl,SNPdata_list,SNP_data_function_nopcp,int = 1)
stopCluster(cl)
}
if(frequentist){
#Frequentist SLR
if(.Platform$OS.type == "unix"){
SNPdata_list <- unlist(mclapply(SNPdata_list,optim_llik_SLR_p,mc.cores = number_cores, y = Y))
} else{
cl <- makePSOCKcluster(number_cores)
clusterExport(cl,c("optimize","solve","eigenMapMatMult3","eigenMapMatMult2"),envir=environment())
SNPdata_list <- unlist(parLapply(cl,SNPdata_list,optim_llik_SLR_p, y = Y))
stopCluster(cl)
}
Pval_function(p_vals = SNPdata_list,n = original_n,thresh = threshold,control = controlrate)
}else{
#Bayesian SLR
w <- matrix(1,nrow = nX,ncol = 1)
BIC.null <- optim_llik_SLR_BIC(w,y = Y)
if(.Platform$OS.type == "unix"){
SNPdata_list <- unlist(mclapply(SNPdata_list,optim_llik_SLR_BIC,mc.cores = number_cores, y = Y))
} else{
cl <- makeCluster(number_cores)
clusterExport(cl,c("solve","eigenMapMatMult3","eigenMapMatMult2"),envir=environment())
SNPdata_list <- unlist(parLapply(cl,SNPdata_list,optim_llik_SLR_BIC, y = Y))
stopCluster(cl)
}
p_vec <- (alterprob*exp(-.5 * (SNPdata_list - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))))/(alterprob*exp(-.5 * (SNPdata_list - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))) + nullprob*exp(-.5 * (as.numeric(BIC.null) - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))))
order_vec <- (1:length(p_vec))[order(p_vec,decreasing = TRUE)]
p_vec <- p_vec[order(p_vec,decreasing = TRUE)]
FDR <- vector()
for(d in 1:length(p_vec)){
FDR[d] <- sum(1 - p_vec[1:d])/d
}
FDR <- FDR[order(order_vec,decreasing = FALSE)]
p_vec <- p_vec[order(order_vec,decreasing = FALSE)]
tf_mat <- as.data.frame(cbind(FDR < threshold,p_vec))
colnames(tf_mat) <- c("Significant","ApprPosteriorProbs")
return(tf_mat)
}
}else{
#Kinship
#SLR with kinship component
nX <- nrow(X)
spec.decomp <- eigen(kinship,symmetric = TRUE)
Q <- spec.decomp$vectors
Qt <- t(Q)
D <- diag(spec.decomp$values,nrow = nX,ncol = nX)
rm(spec.decomp)
intercept <- matrix(1,nrow = nX,ncol = 1)
intercept <- do.call(eigenMapMatMult2,list(Qt,intercept))
Y <- do.call(eigenMapMatMult2,list(Qt,Y)); X <- do.call(eigenMapMatMult2,list(Qt,X))
SNPdata_list <- split(t(X),1:ncol(X))
rm(X);rm(Qt);rm(Q)
if(.Platform$OS.type == "unix"){
SNPdata_list <- mclapply(SNPdata_list,SNP_data_function_nopcp,mc.cores = number_cores,int = intercept)
} else{
cl <- makeCluster(number_cores)
clusterExport(cl,c("SNP_data_function_nopcp"),envir=environment())
SNPdata_list <- parLapply(cl,SNPdata_list,SNP_data_function_nopcp,int = intercept)
stopCluster(cl)
}
#Frequentist RE model
if(frequentist){
if(.Platform$OS.type == "unix"){
SNPdata_list <- unlist(mclapply(SNPdata_list,optim_llik_RE_p,mc.cores = number_cores, y = Y, d = D))
} else{
cl <- makeCluster(number_cores)
clusterExport(cl,c("optimize","diag","solve","log_profile_likelihood_REML","optim_llik_RE_p","eigenMapMatMult2","eigenMapMatMult3"),envir=environment())
SNPdata_list <- unlist(parLapply(cl,SNPdata_list,optim_llik_RE_p, y = Y, d = D))
stopCluster(cl)
}
Pval_function(p_vals = SNPdata_list,n = original_n,thresh = threshold,control = controlrate)
}else{
#Bayesian RE model
BIC.null <- optim_llik_RE_BIC(x = intercept,y = Y,d = D)
if(.Platform$OS.type == "unix"){
SNPdata_list <- unlist(mclapply(SNPdata_list,optim_llik_RE_BIC,mc.cores = number_cores, y = Y, d = D))
} else{
cl <- makeCluster(number_cores)
clusterExport(cl,c("solve","log_profile_likelihood_REML","optimize","eigenMapMatMult2","eigenMapMatMult3"),envir=environment())
SNPdata_list <- unlist(parLapply(cl,SNPdata_list,optim_llik_RE_BIC, y = Y, d = D))
stopCluster(cl)
}
p_vec <- (alterprob*exp(-.5 * (SNPdata_list - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))))/(alterprob*exp(-.5 * (SNPdata_list - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))) + nullprob*exp(-.5 * (as.numeric(BIC.null) - apply(cbind(SNPdata_list,as.numeric(BIC.null)),1,max))))
order_vec <- (1:length(p_vec))[order(p_vec,decreasing = TRUE)]
p_vec <- p_vec[order(p_vec,decreasing = TRUE)]
FDR <- vector()
for(d in 1:length(p_vec)){
FDR[d] <- sum(1 - p_vec[1:d])/d
}
FDR <- FDR[order(order_vec,decreasing = FALSE)]
p_vec <- p_vec[order(order_vec,decreasing = FALSE)]
tf_mat <- as.data.frame(cbind(FDR < threshold,p_vec))
colnames(tf_mat) <- c("Significant","ApprPosteriorProbs")
return(tf_mat)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.