R/GSCA.R

Defines functions GSCA

Documented in GSCA

GSCA <- function(genedata,pattern,chipdata,scaledata=F,Pval.co=0.05,directory=NULL) {
      
      ###presettings
      genedata[,1] <- as.character(genedata[,1])
      pattern[,1] <- as.character(pattern[,1])
      #setting path of data package
      path <- system.file("extdata",package=paste0("Affy",chipdata,"Expr"))
      #read in gene names
      load(paste0(path,"/geneid.rda"))
      #read in reference tables for given compendium
      if(chipdata == "hgu133a") {
            if (!require(Affyhgu133aExpr)) {
                  stop("Affyhgu133aExpr Package is not found")
            } else {
                  data(Affyhgu133aExprtab)
                  tab <- Affyhgu133aExprtab
            }
      } else if(chipdata == "moe4302"){
            if (!require(Affymoe4302Expr)) {
                  stop("Affymoe4302Expr Package is not found")
            } else {
                  data(Affymoe4302Exprtab)
                  tab <- Affymoe4302Exprtab
            }
      } else if(chipdata == "hgu133A2"){
            if (!require(Affyhgu133A2Expr)) {
                  stop("Affyhgu133A2Expr Package is not found")
            } else {
                  data(Affyhgu133A2Exprtab)
                  tab <- Affyhgu133A2Exprtab
            }
      } else if(chipdata == "hgu133Plus2"){
            if (!require(Affyhgu133Plus2Expr)) {
                  stop("Affyhgu133Plus2Expr Package is not found")
            } else {
                  data(Affyhgu133Plus2Exprtab)
                  tab <- Affyhgu133Plus2Exprtab
            }
      } else {
            stop("Please enter valid name for chipdata. Current Supported chipdata: 'hgu133a', 'moe4302', 'hgu133Plus2', 'hgu133A2'")
      }
      
      tabsamplename <- tab$SampleName
      
      #check whether each geneset has at least one gene on the compendium
      genesetname <- NULL
      for (tmpgenesetname in unique(genedata[,1])) {
            if(sum(geneid %in% genedata[genedata[,1]==tmpgenesetname,2]) == 0) {
                  warning(paste("No matching target genes found on the compendium for gene set",tmpgenesetname))
            } else {
                  genesetname <- c(genesetname, tmpgenesetname)
            }
      }
      if (length(genesetname) == 0)
            stop("No matching target genes found on the compendium for all gene sets")
      
      selectsample <- 1:nrow(tab)
      activity <- matrix(0,nrow = length(genesetname),ncol = nrow(tab))
      rownames(activity) <- genesetname
      genesetcutoff <- genesettotalgenenum <- genesetmissinggene <- rep(0,length(genesetname))
      names(genesetcutoff) <- names(genesettotalgenenum) <- names(genesetmissinggene)  <- genesetname
      
      for (genesetid in 1:length(genesetname)) {
            ###Scoring geneset activity
            singlegeneset <- genesetname[genesetid]
            currentgeneset <- genedata[genedata[,1] == singlegeneset & genedata[,2] %in% geneid,]
            tmpgeneexpr <- t(h5read(paste0(path,"/data.h5"),"expr",index=list(NULL,match(currentgeneset[,2],geneid))))/1000
            if (scaledata)
                  tmpgeneexpr <- t(apply(tmpgeneexpr,1,scale))
            tmpgeneexpr <- sweep(tmpgeneexpr,1,currentgeneset[,3],"*")
            score <- colMeans(tmpgeneexpr)         
            activity[genesetid,] <- score
      }
      
      for (genesetid in 1:length(genesetname)) {
            ###Scoring geneset activity
            score <- activity[genesetid,]
            singlegeneset <- genesetname[genesetid]                
            missinggene <- setdiff(genedata[singlegeneset == genedata[,1],2],geneid)
            genesetmissinggene[genesetid] <- length(missinggene)
            genesettotalgenenum[genesetid] <- nrow(genedata)
            
            ###Find samples matching the given pattern
            singlepattern <- pattern[pattern[,1]==singlegeneset,]
            if (singlepattern[,3] == "Norm") {
                  if (singlepattern[,2] == "High") {
                        cutoff <- qnorm(1-singlepattern[,4],mean(score),sd(score))
                        selectsample <- intersect(selectsample,which(score >= cutoff))
                  } else if (singlepattern[,2] == "Low") {
                        cutoff <- qnorm(singlepattern[,4],mean(score),sd(score))
                        selectsample <- intersect(selectsample,which(score < cutoff))
                  } else {
                        stop(paste("Second Column of pattern in",singlegeneset,"is not correctly given"))      
                  }
            } else if (singlepattern[,3] == "Quantile") {
                  if (singlepattern[,2] == "High") {
                        cutoff <- quantile(score,1-singlepattern[,4])
                        selectsample <- intersect(selectsample,which(score >= cutoff))
                  } else if (singlepattern[,2] == "Low") {
                        cutoff <- quantile(score,singlepattern[,4])
                        selectsample <- intersect(selectsample,which(score < cutoff))
                  } else {
                        stop(paste("Second Column of pattern in",singlegeneset,"is not correctly given"))      
                  }
            }  else if (singlepattern[,3] == "Exprs") {
                  if (singlepattern[,2] == "High") {
                        cutoff <- singlepattern[,4]
                        selectsample <- intersect(selectsample,which(score >= cutoff))
                  } else if (singlepattern[,2] == "Low") {
                        cutoff <- singlepattern[,4]
                        selectsample <- intersect(selectsample,which(score < cutoff))
                  } else {
                        stop(paste("Second Column of pattern in",singlegeneset,"is not correctly given"))      
                  }                
            } else {
                  stop(paste("Cutoff type pattern of geneset",singlegeneset,"is not correctly given"))
            }
            genesetcutoff[genesetid] <- cutoff
      }
      
      ExpID <- tab[selectsample,"ExperimentID"]
      tmpTypes <- tab[selectsample,"SampleType"]
      
      tabTWO <- table(tab$SampleType)
      tabTWO <- names(tabTWO)[tabTWO > 2]
      tab <- tab[tab$SampleType %in% tabTWO,]
      ExpID <- ExpID[tmpTypes %in% tab$SampleType]
      tmpTypes <- tmpTypes[tmpTypes %in% tab$SampleType]
      
      ## Fisher's exact test
      ## Let X = sample type i
      if(length(tmpTypes)>0){
            ttT <- table(tmpTypes) ## total of each sample types in enrichment region
            sT <- sum(ttT) ## total samples in enrichment region
            bgT <- table(tab$SampleType)
            bgT <- bgT[names(ttT)]
            ContextN <- sum(table(tab$SampleType)>2)
            
            SCORE <- matrix(0, nrow=length(ttT), ncol=4)
            ExperimentID <- rep("0",length(bgT))
            for(i in 1:length(bgT)){
                  r1c1 <- ttT[i] ### num of samples X in enrichment region
                  r1c2 <- sT - ttT[i] ### num != sampletypes x in enrichment region
                  r2c1 <- bgT[i] - ttT[i] ### num of sampletypes X not in enrichment region
                  r2c2 <- length(tab$SampleType) - r1c1 - r1c2 - r2c1
                  tmpmat <- matrix(c(r1c1,r2c1,r1c2,r2c2),ncol=2)
                  SCORE[i,1] <- fisher.test(tmpmat,alternative="greater")$p.value
                  SCORE[i,2] <- round(((as.numeric(ttT)[i]+sT/length(tab$SampleType)) / 
                                             (as.numeric(bgT)[i]+1))/(
                                                   sT/length(tab$SampleType)),3)
                  SCORE[i,3] <- min(SCORE[i,1]*ContextN,1)
                  ExperimentID[i] <- paste(unique(unlist(strsplit(
                        paste(ExpID[tmpTypes==names(ttT)[i]],
                              collapse=";"),";"))),collapse=";")
            }
            
            FIN <- data.frame(as.numeric(ttT),as.numeric(bgT),SCORE[,2],SCORE[,3],
                              rownames(ttT),ExperimentID,stringsAsFactors=F)
            colnames(FIN) <- c("Active","Total","FoldChange","Adj.Pvalue",
                               "SampleType","ExperimentID")
            FIN <- FIN[order(as.numeric(FIN[,"Adj.Pvalue"],
                                        -1*as.numeric(FIN[,"Active"]),decreasing=FALSE)),]
            FIN <- FIN[as.numeric(FIN[,"Adj.Pvalue"]) <= Pval.co,]
            FIN[,4] <- signif(FIN[,4],3)
            
            
            if(!is.null(directory)) {
                  expiddex <- unique(unlist(strsplit(as.character(FIN$ExperimentID),";")))
                  for(k in 1:length(expiddex)){
                        filepath <- paste0(directory,"/",expiddex[k])
                        Temp <- tabSearch(expiddex[k],chipdata)
                        if(nrow(Temp) > 1){
                              dir.create(filepath)
                              GSCAeda(genedata,pattern,chipdata=chipdata,
                                      SearchOutput=Temp,Pval.co=Pval.co,
                                      Ordering="Average",Title=expiddex[k],
                                      outputdir=filepath)
                        }
                  }
            }
            
            if(is.null(dim(FIN)) | nrow(FIN)==0) {
                  message("No significant biological contexts found.")
            } else {
                  FIN <- cbind(1:nrow(FIN),FIN)
                  colnames(FIN)[1] <- "Rank"
                  rownames(FIN) <- 1:nrow(FIN)
            }
            colnames(activity) <- tabsamplename
            
            return(list(Ranking=FIN,Score=activity,Pattern=pattern,Cutoff=genesetcutoff,SelectedSample=selectsample,Totalgene=genesettotalgenenum,Missinggene=genesetmissinggene,Chipdata=chipdata))
            
      } else {
            stop("No samples show the pattern of interest.
       Try relaxing cutoffs.")
      }
}

Try the GSCA package in your browser

Any scripts or data that you put into this service are public.

GSCA documentation built on Nov. 8, 2020, 8:02 p.m.