R/permutationMultipleLm.R

Defines functions permutationMultipleLm

Documented in permutationMultipleLm

#' permutationMultipleLm
#'
#' permutationMultipleLm is a permutation test to calculate the empirical p 
#' values for a weighted multiple linear regression.
#'
#' @param fc a vector of numeric values representing gene expression fold 
#' change
#' @param net a matrix of numeric values in the size of gene number x gene set 
#' number, representing the connectivity between genes and gene sets
#' @param weights a vector of numeric values representing the weights of 
#' permuated genes
#' @param num an integer value representing the number of permutations
#' @param verbose an boolean value indicating whether or not to print output to 
#' the screen 
#' 
#' 
#' @return a data frame comprising the following columns:
#' \itemize{
#' \item {term} a vector of character incidating the names of gene sets.
#' \item {usedGenes} a vector of numeric values indicating the number of genes 
#' used in the model.
#' \item {Estimate} a vector of numeric values indicating the regression 
#' coefficients.
#' \item {Std..Error} a vector of numeric values indicating the standard 
#' errors of regression coefficients.
#' \item {t.value} a vector of numeric values indicating the t-statistics of 
#' regression coefficients.
#' \item {observedPval} a vector of numeric values [0,1] indicating the p 
#' values from the multiple weighted regression model.
#' \item {empiricalPval} a vector of numeric values [0,1] indicating the 
#' empirical p values from the permutation test.
#' }
#'
#' @export
#'
#' @examples
#' 
#' # load data
#' data(heart.metaXcan)
#' gene <- heart.metaXcan$gene_name
#'
#' # extract the imputed Z-score of differential gene expression, which follows 
#' # the normal distribution
#' fc <- heart.metaXcan$zscore
#'
#' # use as weights the prediction R^2 and the fraction of imputation-used SNPs 
#' usedFrac <- heart.metaXcan$n_snps_used / heart.metaXcan$n_snps_in_cov
#' r2 <- heart.metaXcan$pred_perf_r2
#' weights <- usedFrac*r2
#'
#' # build a new data frame for the following weighted linear regression-based 
#' # enrichment analysis
#' data <- data.frame(gene,fc,weights)
#' head(data)
#'
#' net <- MSigDB.KEGG.Pathway$net
#'
#' # intersect the imputed genes with the gene sets of interest
#' data2 <- orderedIntersect( x = data , by.x = data$gene , 
#' by.y = rownames(net)  )
#' net2 <- orderedIntersect( x = net , by.x = rownames(net) , 
#' by.y = data$gene  )
#' all( rownames(net2) == as.character(data2$gene) )
#'
#' # the MGSEA.res1 uses the weighted multiple linear regression to do 
#' # permutation test, 
#' # while MGSEA.res2 used the solution of weighted matrix operation. The 
#' # latter one takes substantially less time.
#' # system.time( MGSEA.res1<-permutationMultipleLm(fc=data2$fc, net=net2, 
#' # weights=data2$weights, num=1000))
#' # system.time( MGSEA.res2<-permutationMultipleLmMatrix(fc=data2$fc, 
#' # net=net2, weights=data2$weights, num=1000))
#' # head(MGSEA.res2)
#'
#'
#' @author Shijia Zhu, \email{shijia.zhu@@mssm.edu}
#'
#'
#' @seealso \code{\link{orderedIntersect}}; 
#' \code{\link{permutationMultipleLmMatrix}};
#'
permutationMultipleLm <- function( fc, net, weights=rep(1,nrow(net)), 
                                   num=100, verbose=TRUE )
{
    net <- as.matrix(net) # to transform the sparseMatrix to matrix
    shuffle <- lapply( seq_len(num), function(i) {
        if( verbose ) reportProgress(i,num,10)
        #randomfc <- rnorm(nrow(net))
        shuffledFC <- sample(fc,length(fc))
        shuffledLM <- lm( shuffledFC~net , weights=weights )
        p <- summary(shuffledLM)$coef[-1,4]
        f <- summary(shuffledLM)$fstatistic[1]
        list( p=p , f=f )
    } )
    shuffledPval <- do.call( cbind , lapply(shuffle,function(x) x$p ) )
    shuffledF    <- do.call(   c   , lapply(shuffle,function(x) x$f ) )
    trueLM <- lm( fc~net , weights=weights )
    observedCoef <- summary(trueLM)$coef[-1,-4]
    observedPval <- summary(trueLM)$coef[-1,4]
    observedF <- summary(trueLM)$fstatistic[1]
    
    empiricalPval <- vector("numeric", nrow(shuffledPval))
    for( i in seq_len(nrow(shuffledPval)) )
    {
        empiricalPval[i] <- mean( shuffledPval[i,]<observedPval[i] )
    }
    nonNaRange <- which( !is.na(trueLM$coefficients[-1]) )
    term <- colnames(net)[nonNaRange]
    usedGenes <- apply(as.matrix(net), 2, 
                      function(x) sum(x!=0,na.rm=TRUE) )[nonNaRange]
    # usedWeightedGenes = colSums( net*weights )
    pval <- data.frame(term,usedGenes,observedCoef,observedPval,empiricalPval)
    rownames(pval) = NULL
    pval <- pval[order(pval$empiricalPval),]
    fval <- c( f=observedF , f.pval=mean( shuffledF<observedF ) )
    #list( fval=fval , pval=pval )
    pval
}

Try the GIGSEA package in your browser

Any scripts or data that you put into this service are public.

GIGSEA documentation built on Nov. 8, 2020, 7:02 p.m.