Nothing
.calcLikelihoodQuantities <- function(Y, X, Sigma.inv, cholSigma.diag){
if (is(Sigma.inv, "Matrix")) X <- Matrix(X, sparse = FALSE)
n <- length(Y)
k <- ncol(X)
### Calulate the generalized least squares estimate
Sigma.inv_X <- crossprod(Sigma.inv, X)
Xt_Sigma.inv_X <- crossprod(X, Sigma.inv_X)
# fix issue with not recognizing the matrix as symmetric
Xt_Sigma.inv_X <- (Xt_Sigma.inv_X + t(Xt_Sigma.inv_X))/2
chol.Xt_Sigma.inv_X <- chol(Xt_Sigma.inv_X)
Xt_Sigma.inv_X.inv <- chol2inv(chol.Xt_Sigma.inv_X)
beta <- crossprod(Xt_Sigma.inv_X.inv, crossprod(Sigma.inv_X, Y))
# calc Xb
fits <- X %*% beta
# calc marginal residuals = (Y - Xb)
residM <- as.vector(Y - fits)
### calculate PY
PY <- crossprod(Sigma.inv, residM)
# compute RSS
YPY <- crossprod(Y, PY)
RSS <- as.numeric(YPY/(n-k))
# Sigma.inv_R <- crossprod(Sigma.inv, residM)
# Rt_Sigma.inv_R <- crossprod(residM, Sigma.inv_R)
# Rt_Sigma.inv_R <- crossprod(residM, PY)
# RSS <- as.numeric(Rt_Sigma.inv_R/(n - k))
# log likelihood
logLik <- as.numeric(-0.5 * n * log(2 * pi * RSS) - sum(log(cholSigma.diag)) - 0.5 * YPY/RSS)
# REML log likelihood; accounting for estimation of mean effects
logLikR <- as.numeric(logLik + 0.5 * k * log(2 * pi * RSS) - sum(log(diag(chol.Xt_Sigma.inv_X))))
return(list(PY = PY, RSS = RSS, logLik = logLik, logLikR = logLikR,
Sigma.inv_X = Sigma.inv_X, Xt_Sigma.inv_X.inv = Xt_Sigma.inv_X.inv,
beta = as.numeric(beta), fits = fits, residM = residM))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.