Nothing
setGeneric("assocTestSingle", function(gdsobj, ...) standardGeneric("assocTestSingle"))
## do we want the GxE.return.cov option?
## do we want to make imputing to the mean optional?
setMethod("assocTestSingle",
"SeqVarIterator",
function(gdsobj, null.model, test=c("Score", "Score.SPA", "BinomiRare", "CMP"),
recalc.pval.thresh=0.05, GxE=NULL,
sparse=TRUE, imputed=FALSE, male.diploid=TRUE, genome.build=c("hg19", "hg38"), verbose=TRUE) {
test <- match.arg(test)
# don't use sparse matrices for imputed dosages
if (imputed) sparse <- FALSE
# coerce null.model if necessary
if (sparse) null.model <- .nullModelAsMatrix(null.model)
# filter samples to match null model
sample.index <- .setFilterNullModel(gdsobj, null.model, verbose=verbose)
if (!is.null(GxE)) GxE <- .modelMatrixColumns(null.model, GxE)
# check ploidy
if (SeqVarTools:::.ploidy(gdsobj) == 1) male.diploid <- FALSE
# results
res <- list()
n.iter <- length(variantFilter(gdsobj))
set.messages <- ceiling(n.iter / 100) # max messages = 100
i <- 1
iterate <- TRUE
while (iterate) {
var.info <- variantInfo(gdsobj, alleles=FALSE, expanded=TRUE)
if (!imputed) {
geno <- expandedAltDosage(gdsobj, use.names=FALSE, sparse=sparse)[sample.index,,drop=FALSE]
} else {
geno <- imputedDosage(gdsobj, use.names=FALSE)[sample.index,,drop=FALSE]
}
# take note of number of non-missing samples
#n.obs <- colSums(!is.na(geno))
n.obs <- .countNonMissing(geno, MARGIN = 2)
# allele frequency
freq <- .alleleFreq(gdsobj, geno, sample.index=sample.index,
male.diploid=male.diploid, genome.build=genome.build)
# filter monomorphic variants
keep <- .filterMonomorphic(geno, count=n.obs, freq=freq$freq, imputed=imputed)
# for BinomiRare and CMP, restrict to variants where the alternate allele is minor
if (test %in% c("BinomiRare", "CMP")) {
keep <- keep & (freq$freq <= 0.5)
}
if (!all(keep)) {
var.info <- var.info[keep,,drop=FALSE]
geno <- geno[,keep,drop=FALSE]
n.obs <- n.obs[keep]
freq <- freq[keep,,drop=FALSE]
}
# mean impute missing values
if (any(n.obs < nrow(geno))) {
geno <- .meanImpute(geno, freq$freq)
}
# do the test
if (ncol(geno) == 0){
res[[i]] <- NULL
} else {
assoc <- testGenoSingleVar(null.model, G=geno, E=GxE, test=test,
recalc.pval.thresh=recalc.pval.thresh)
res[[i]] <- cbind(var.info, n.obs, freq, assoc)
}
if (verbose & n.iter > 1 & i %% set.messages == 0) {
message(paste("Iteration", i , "of", n.iter, "completed"))
}
i <- i + 1
iterate <- iterateFilter(gdsobj, verbose=FALSE)
}
as.data.frame(rbindlist(res))
})
setMethod("assocTestSingle",
"GenotypeIterator",
function(gdsobj, null.model, test=c("Score", "Score.SPA", "BinomiRare", "CMP"),
recalc.pval.thresh=0.05, GxE=NULL,
male.diploid=TRUE, verbose=TRUE) {
test <- match.arg(test)
# filter samples to match null model
sample.index <- .sampleIndexNullModel(gdsobj, null.model)
if (!is.null(GxE)) GxE <- .modelMatrixColumns(null.model, GxE)
# results
res <- list()
n.iter <- length(snpFilter(gdsobj))
set.messages <- ceiling(n.iter / 100) # max messages = 100
i <- 1
iterate <- TRUE
while (iterate) {
var.info <- variantInfo(gdsobj)
geno <- getGenotypeSelection(gdsobj, scan=sample.index, order="selection",
transpose=TRUE, use.names=FALSE, drop=FALSE)
# take note of number of non-missing samples
#n.obs <- colSums(!is.na(geno))
n.obs <- .countNonMissing(geno, MARGIN = 2)
# allele frequency
freq <- .alleleFreq(gdsobj, geno, sample.index=sample.index,
male.diploid=male.diploid)
# filter monomorphic variants (and max alternate frequency variants)
keep <- .filterMonomorphic(geno, count=n.obs, freq=freq$freq)
# for BinomiRare and CMP, restrict to variants where the alternate allele is minor
if (test %in% c("BinomiRare", "CMP")) {
keep <- keep & (freq$freq <= 0.5)
}
if (!all(keep)) {
var.info <- var.info[keep,,drop=FALSE]
geno <- geno[,keep,drop=FALSE]
n.obs <- n.obs[keep]
freq <- freq[keep,,drop=FALSE]
}
# mean impute missing values
if (any(n.obs < nrow(geno))) {
geno <- .meanImpute(geno, freq$freq)
}
# do the test
if (ncol(geno) == 0){
res[[i]] <- NULL
} else {
assoc <- testGenoSingleVar(null.model, G=geno, E=GxE, test=test,
recalc.pval.thresh=recalc.pval.thresh)
res[[i]] <- cbind(var.info, n.obs, freq, assoc)
}
if (verbose & n.iter > 1 & i %% set.messages == 0) {
message(paste("Iteration", i , "of", n.iter, "completed"))
}
i <- i + 1
iterate <- GWASTools::iterateFilter(gdsobj)
}
as.data.frame(rbindlist(res))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.