Nothing
## ----LoadFunctions, echo=FALSE, message=FALSE, warning=FALSE, results='hide'----
library(knitr)
opts_chunk$set(error = FALSE)
library(EventPointer)
library(dplyr)
library(kableExtra)
## ----style, echo = FALSE, results = 'asis'------------------------------------
##BiocStyle::markdown()
## ---- eval=FALSE--------------------------------------------------------------
#
# library(BiocManager)
#
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("EventPointer")
## ----CDFGTF, eval=TRUE, warning=FALSE, collapse=TRUE--------------------------
# Set input variables
PathFiles<-system.file("extdata",package="EventPointer")
DONSON_GTF<-paste(PathFiles,"/DONSON.gtf",sep="")
PSRProbes<-paste(PathFiles,"/PSR_Probes.txt",sep="")
JunctionProbes<-paste(PathFiles,"/Junction_Probes.txt",sep="")
Directory<-tempdir()
array<-"HTA-2_0"
# Run the function
CDFfromGTF(input="AffyGTF",inputFile=DONSON_GTF,
PSR=PSRProbes,Junc=JunctionProbes,
PathCDF=Directory,microarray=array)
## ----aroma, eval=FALSE--------------------------------------------------------
#
# # Simple example of Aroma.Affymetrix Preprocessing Pipeline
#
# verbose <- Arguments$getVerbose(-8);
# timestampOn(verbose);
# projectName <- "Experiment"
# cdfGFile <- "EP_HTA-2_0,r"
# cdfG <- AffymetrixCdfFile$byChipType(cdfGFile)
# cs <- AffymetrixCelSet$byName(projectName, cdf=cdfG)
# bc <- NormExpBackgroundCorrection(cs, method="mle", tag=c("*","r11"));
# csBC <- process(bc,verbose=verbose,ram=20);
# qn <- QuantileNormalization(csBC, typesToUpdate="pm");
# csN <- process(qn,verbose=verbose,ram=20);
# plmEx <- ExonRmaPlm(csN, mergeGroups=FALSE)
# fit(plmEx, verbose=verbose)
# cesEx <- getChipEffectSet(plmEx)
# ExFit <- extractDataFrame(cesEx, addNames = TRUE)
## ----EP_arrays, eval=TRUE-----------------------------------------------------
data(ArraysData)
Dmatrix<-matrix(c(1,1,1,1,0,0,1,1),nrow=4,ncol=2,byrow=FALSE)
Cmatrix<-t(t(c(0,1)))
EventsFound<-paste(system.file("extdata",package="EventPointer"),"/EventsFound.txt",sep="")
Events<-EventPointer(Design=Dmatrix,
Contrast=Cmatrix,
ExFit=ArraysData,
Eventstxt=EventsFound,
Filter=FALSE,
Qn=0.25,
Statistic="LogFC",
PSI=TRUE)
## ----EP_Arrays_Res_Table, echo=FALSE------------------------------------------
kable(Events[1:5,],digits=5,row.names=TRUE,align="c",caption = "Table 1: EventPointer Arrays results")
## ----Arrays_IGV, eval=TRUE, collapse=TRUE-------------------------------------
# Set Input Variables
DONSON_GTF<-paste(PathFiles,"/DONSON.gtf",sep="")
PSRProbes<-paste(PathFiles,"/PSR_Probes.txt",sep="")
JunctionProbes<-paste(PathFiles,"/Junction_Probes.txt",sep="")
Directory<-tempdir()
EventsFound<-paste(system.file("extdata",package="EventPointer"),"/EventsFound.txt",sep="")
array<-"HTA-2_0"
# Generate Visualization files
EventPointer_IGV(Events[1,,drop=FALSE],"AffyGTF",DONSON_GTF,PSRProbes,JunctionProbes,Directory,EventsFound,array)
## ----PrepareBam, eval=FALSE, collapse=TRUE------------------------------------
# # Obtain the samples and directory for .bam files
#
# # the object si contains example sample information from the SGSeq R package
# # use ?si to see the corresponding documentation
#
# BamInfo<-si
# Samples<-BamInfo[,2]
# PathToSamples <- system.file("extdata/bams", package = "SGSeq")
# PathToGTF<-paste(system.file("extdata",package="EventPointer"),"/FBXO31.gtf",sep="")
#
# # Run PrepareBam function
# SG_RNASeq<-PrepareBam_EP(Samples=Samples,
# SamplePath=PathToSamples,
# Ref_Transc="GTF",
# fileTransc=PathToGTF,
# cores=1)
## ----EventDetection, eval=TRUE------------------------------------------------
# Run EventDetection function
data(SG_RNASeq)
TxtPath<-tempdir()
AllEvents_RNASeq<-EventDetection(SG_RNASeq,cores=1,Path=TxtPath)
## ----ListofLists, eval=FALSE--------------------------------------------------
# Events[[i]][[j]]
## ----EP_RNASeq, eval=TRUE-----------------------------------------------------
Dmatrix<-matrix(c(1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1),ncol=2,byrow=FALSE)
Cmatrix<-t(t(c(0,1)))
Events <- EventPointer_RNASeq(AllEvents_RNASeq,Dmatrix,Cmatrix,Statistic="LogFC",PSI=TRUE)
## ----EP_RNASeq_Res_Table, echo=FALSE------------------------------------------
kable(Events[1:5,],digits=5,row.names=TRUE,align="c",caption = "Table 2: EventPointer RNASeq results")
## ----RNAS_IGV, eval=TRUE, collapse=TRUE---------------------------------------
# IGV Visualization
EventsTxt<-paste(system.file("extdata",package="EventPointer"),"/EventsFound_RNASeq.txt",sep="")
PathGTF<-tempdir()
EventPointer_RNASeq_IGV(Events,SG_RNASeq,EventsTxt,PathGTF)
## ----GTFfGTF, eval=TRUE, warning=FALSE, collapse=TRUE-------------------------
# Set input variables
PathFiles<-system.file("extdata",package="EventPointer")
inputFile <- paste(PathFiles,"/gencode.v24.ann_2genes.gtf",sep="")
Transcriptome <- "Gencode24_2genes"
Pathtxt <- tempdir()
PathGTF <- tempdir()
# Run the function
EventXtrans <- EventsGTFfromTrancriptomeGTF(inputFile = inputFile,
Transcriptome = Transcriptome,
Pathtxt=Pathtxt,
PathGTF=PathGTF)
## ----GTFfGTFnames, eval=TRUE, warning=FALSE, collapse=TRUE--------------------
names(EventXtrans)
## ----PSI_Statistic, eval=TRUE, warning=FALSE, collapse=TRUE-------------------
#first: load data from kallisto output
PathFiles <- system.file("extdata",package="EventPointer")
filesnames <- dir(paste0(PathFiles,"/output"))
PathFiles <- dir(paste0(PathFiles,"/output"),full.names = TRUE)
dirtoload <- paste0(PathFiles,"/","abundance.tsv")
RNASeq <- read.delim(dirtoload[1],sep = "\t", colClasses = c(NA,"NULL","NULL","NULL",NA))
for (n in 2:length(dirtoload)){
RNASeq[,n+1] <- read.delim(dirtoload[n],sep = '\t', colClasses = c('NULL','NULL','NULL','NULL',NA))
}
rownames(RNASeq)<-RNASeq[,1]
RNASeq<-RNASeq[,-1]
colnames(RNASeq) <- filesnames
#second: the annotation of the transcript names must be equal in RNASeq and PathsxTranscript
rownames(RNASeq) <- sapply(strsplit(rownames(RNASeq),"\\|"),function(X) return(X[1]))
RNASeq<-as.matrix(RNASeq) #must be a matrix variable
#third: Obtain values of PSI
PSIss <- GetPSI_FromTranRef(PathsxTranscript = EventXtrans,Samples = RNASeq,Filter = FALSE)
PSI <- PSIss$PSI
Expression <- PSIss$ExpEvs
## ----PSI_Statistic2, eval=TRUE, warning=FALSE, collapse=TRUE------------------
# Design and contrast matrix:
Design <- matrix(c(1,1,1,1,0,0,1,1),nrow=4)
Contrast <- matrix(c(0,1),nrow=2)
# Statistical analysis:
Fit <- EventPointer_RNASeq_TranRef(Count_Matrix = Expression,Statistic = "LogFC",Design = Design, Contrast = Contrast)
## ----EP_TranRef_Res_Table, echo=FALSE-----------------------------------------
kable(Fit,digits=5,row.names=FALSE,align="c",caption = "Table 3: PSI_Statistic results")
## ----pathprimer3, eval=FALSE, warning=FALSE, collapse=TRUE--------------------
#
# Primer3Path <- Sys.which("primer3_core")
#
## ----FindPrimers, eval=FALSE, warning=FALSE, collapse=TRUE--------------------
#
# data("EventXtrans")
# #From the output of EventsGTFfromTranscriptomeGTF we take the splicing graph information
# SG_list <- EventXtrans$SG_List
# #SG_list contains the information of the splicing graphs for each gene
# #Let's supone we want to design primers for the event 1 of the gene ENSG00000254709.7
#
# #We take the splicing graph information of the required gene
# SG <- SG_list$ENSG00000254709.7
#
# #We point the event number
# EventNum <- 1
#
# #Define rest of variables:
# Primer3Path <- Sys.which("primer3_core")
# Dir <- "C:\\PROGRA~2\\primer3\\"
#
# MyPrimers_taqman <- FindPrimers(SG = SG,
# EventNum = EventNum,
# Primer3Path = Primer3Path,
# Dir = Dir,
# taqman = 1,
# nProbes=1,
# nPrimerstwo=4,
# ncommonForward=4,
# ncommonReverse=4,
# nExons=10,
# nPrimers =5,
# maxLength = 1200)
#
## ----EP_DesiCP_Res_Table, eval=TRUE, warning=FALSE, collapse=TRUE,echo=FALSE----
data("MyPrimers")
kable(MyPrimers[1:5,],digits=5,row.names=FALSE,align="c",caption = "Table 4: Data.frame output of FindPrimers for conventional PCR") %>%
kable_styling() %>%
scroll_box(width ="660px")
## ----EP_DesiTP_Res_Table, eval=TRUE, warning=FALSE, collapse=TRUE,echo=FALSE----
data("MyPrimers_taqman")
kable(MyPrimers_taqman[1:5,],digits=5,row.names=FALSE,align="c",caption = "Table 5: Data.frame output of FindPrimers for conventional PCR") %>%
kable_styling() %>%
scroll_box(width ="660px")
## ----CDFGTF_MP, eval=TRUE, warning=FALSE, collapse=TRUE-----------------------
# Set input variables
PathFiles<-system.file("extdata",package="EventPointer")
DONSON_GTF<-paste(PathFiles,"/DONSON.gtf",sep="")
PSRProbes<-paste(PathFiles,"/PSR_Probes.txt",sep="")
JunctionProbes<-paste(PathFiles,"/Junction_Probes.txt",sep="")
Directory<-tempdir()
array<-"HTA-2_0"
# Run the function
CDFfromGTF_Multipath(input="AffyGTF",inputFile=DONSON_GTF,
PSR=PSRProbes,Junc=JunctionProbes,
PathCDF=Directory,microarray=array,paths=3)
## ----EventDetection_MP, eval=TRUE---------------------------------------------
# Run EventDetection function
data(SG_RNASeq)
TxtPath<-tempdir()
AllEvents_RNASeq_MP<-EventDetectionMultipath(SG_RNASeq,cores=1,Path=TxtPath,paths=3)
## ----ListofLists_MP, eval=FALSE-----------------------------------------------
# Events[[i]][[j]]
## ----PSI_ADV, eval=TRUE, collapse=TRUE----------------------------------------
# Microarrays (two paths)
data(ArraysData)
PSI_Arrays_list<-EventPointer:::getPSI(ArraysData)
PSI_Arrays <- PSI_Arrays_list$PSI
Residuals_Arrays <- PSI_Arrays_list$Residuals
# Microarrays (Multi-Path)
data(ArrayDatamultipath)
PSI_MP_Arrays_list <- EventPointer:::getPSImultipath(ArrayDatamultipath)
PSI_multipath_Arrays <- PSI_MP_Arrays_list$PSI
Residuals_multipath_Arrays <- PSI_MP_Arrays_list$Residuals
# RNASeq (two paths)
data(AllEvents_RNASeq)
PSI_RNASeq_list<-EventPointer:::getPSI_RNASeq(AllEvents_RNASeq)
PSI_RNASeq <- PSI_RNASeq_list$PSI
Residuals_RNASeq <- PSI_RNASeq_list$Residuals
# RNASeq (Multi-Path)
data(AllEvents_RNASeq_MP)
PSI_MP_RNASeq_list <- EventPointer:::getPSI_RNASeq_MultiPath(AllEvents_RNASeq_MP)
PSI_multipath_RNASeq <- PSI_MP_RNASeq_list$PSI
Residuals_multipath_RNASeq <- PSI_MP_RNASeq_list$Residuals
## ----PSI_ADV2, eval=TRUE, collapse=TRUE---------------------------------------
Dmatrix<-matrix(c(1,1,1,1,0,0,1,1),nrow=4,ncol=2,byrow=FALSE)
Cmatrix<-t(c(0,1))
table <- PSI_Statistic(PSI = PSI_Arrays,Design = Dmatrix,Contrast = Cmatrix,nboot = 20)
## ----PSI_ADV3, eval=TRUE, collapse=TRUE---------------------------------------
Dmatrix<-matrix(c(1,1,1,1,0,0,1,1),nrow=4,ncol=2,byrow=FALSE)
Cmatrix<-t(t(c(0,1)))
Ress <- vector("list", length = ncol(Cmatrix))
fitresiduals <- limma::lmFit(Residuals_Arrays,design = Dmatrix)
fitresiduals2 <- limma::contrasts.fit(fitresiduals, Cmatrix)
fitresiduals2 <- limma::eBayes(fitresiduals2)
# repeated if there is more than one contrast
for (jj in 1:ncol(Cmatrix)) {
TopPSI <- limma::topTable(fitresiduals2, coef = jj, number = Inf)[, 1, drop = FALSE]
colnames(TopPSI)<-"Residuals"
Ress[[jj]] <- TopPSI
}
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.