Nothing
#Copyright (c) 2015, Institute for Systems Biology
#
#Permission is hereby granted, free of charge, to any person obtaining
#a copy of this software and associated documentation files (the
#"Software"), to deal in the Software without restriction, including
#without limitation the rights to use, copy, modify, merge, publish,
#distribute, sublicense, and/or sell copies of the Software, and to
#permit persons to whom the Software is furnished to do so, subject to
#the following conditions:
#The above copyright notice and this permission notice shall be
#included in all copies or substantial portions of the Software.
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
#EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
#LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
#WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# Author: William Poole
# Ported to R: David L Gibbs
# Email: dgibbs@systemsbiology.org / william.poole@systemsbiology.org / tknijnen@systemsbiology.org
# Created: June 2015
pop.var <- function(x) var(x) * (length(x)-1) / length(x)
pop.sd <- function(x) sqrt(pop.var(x))
#Input: raw data vector (of one variable) with no missing samples. May be a list or an array.
#Output Transforemd data vector w.
transformData <- function(data_vector) {
dvm = mean(data_vector)
dvsd = pop.sd(data_vector)
s = (data_vector-dvm)/dvsd
distr = ecdf(s)
sapply(s, function(a) -2*log(distr(a)))
}
#Input: An m x n data matrix with each of m rows representing a variable and each of n columns representing a sample. Should be of type numpy.array.
# Note: Method does not deal with missing values within the data.
#Output: An m x m matrix of pairwise covariances between transformed raw data vectors
calculateCovariances <- function(data_matrix){
transformed_data_matrix = apply(data_matrix, MARGIN=1, FUN=transformData)
covar_matrix = cov(transformed_data_matrix)
covar_matrix
}
#Input: A m x m numpy array of covariances between transformed data vectors and a vector of m p-values to combine.
#Output: A combined P-value.
# If extra_info == True: also returns the p-value from Fisher's method, the scale factor c, and the new degrees of freedom from Brown's Method
combinePValues <- function(covar_matrix, p_values, extra_info = FALSE){
N = ncol(covar_matrix) # number of samples
df_fisher = 2.0*N
Expected = 2.0*N
cov_sum <- (2*sum(covar_matrix[lower.tri(covar_matrix, diag=FALSE)]))
Var = 4.0*N+cov_sum
c = Var/(2.0*Expected)
df_brown = (2.0*Expected^2)/Var
if (df_brown > df_fisher) {
df_brown = df_fisher
c = 1.0
}
x = 2.0*sum( -log(p_values) )
p_brown = pchisq(df=df_brown, q=x/c, lower.tail=FALSE)
p_fisher = pchisq(df=df_fisher, q=x, lower.tail=FALSE)
if (extra_info) {
return(list(P_test=p_brown, P_Fisher=p_fisher, Scale_Factor_C=c, DF=df_brown))
}
else {
return(p_brown)
}
}
#Input: An m x n data matrix with each of m rows representing a variable and each of n columns representing a sample. Should be of type numpy.array
# A vector of m P-values to combine. May be a list or of type numpy.array.
#Output: A combined P-value.
# If extra_info == True: also returns the p-value from Fisher's method, the scale factor c, and the new degrees of freedom from Brown's Method
empiricalBrownsMethod <- function(data_matrix, p_values, extra_info = FALSE) {
# inputs must be numeric
covar_matrix = calculateCovariances(data_matrix)
return(combinePValues(covar_matrix, p_values, extra_info))
}
#
#Input: An m x n data matrix with each of m rows representing a variable and each of n columns representing a sample. Should be of type numeric matrix
# A numeric vector of m P-values to combine.
#Output: A combined P-value using Kost's Method.
# If extra_info == True: also returns the p-value from Fisher's method, the scale factor c, and the new degrees of freedom from Brown's Method
kostsMethod <- function(data_matrix, p_values, extra_info = FALSE) {
covar_matrix <- calculateKostCovariance(data_matrix)
combinePValues(covar_matrix, p_values, extra_info = extra_info)
}
#Input correlation between two n x n data vectors.
#Output: Kost's approximation of the covariance between the -log cumulative distributions. This is calculated with a cubic polynomial fit.
kostPolyFit <- function(cor) {
a1 <- 3.263
a2 <- 0.710
a3 <- 0.027 #Kost cubic coeficients
(a1*cor + a2*cor^2 + a3*cor^3)
}
#Input: An m x n data matrix with each of m rows representing a variable and each of n columns representing a sample. Should be of type numeric matrix.
# Note: Method does not deal with missing values within the data.
#Output: An m x m matrix of pairwise covariances between the data vectors calculated using Kost's polynomial fit and the pearson correlation function.
calculateKostCovariance <- function(data_matrix) {
m = nrow(data_matrix)
covar_matrix = mat.or.vec(m, m)
for (i in 1:m) {
for (j in i:m) {
res0 <- cor.test(data_matrix[i,], data_matrix[j,])
cor <- res0$estimate
p_val <- res0$p.value
covar = kostPolyFit(cor)
covar_matrix[i, j] = covar
covar_matrix[j, i] = covar
}
}
return(covar_matrix)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.