Nothing
## ---- eval=FALSE--------------------------------------------------------------
# ## try http if https is not available
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("EGAD")
## ---- eval=FALSE--------------------------------------------------------------
# browseVignettes("EGAD")
## ----library, results="hide"--------------------------------------------------
library(EGAD)
## ----eval=FALSE---------------------------------------------------------------
# data <- get_phenocarta(species="human", type="all")
## ----eval=FALSE---------------------------------------------------------------
# data <- get_biogrid(species="9606")
## ----eval=FALSE---------------------------------------------------------------
# data <- get_biogrid(species="9606", version="3.4.131")
## ----eval=FALSE---------------------------------------------------------------
# exprs <- get_expression_matrix_from_GEO(gseid="GSE34308")
## ----eval=FALSE---------------------------------------------------------------
# exprs <- get_expression_data_gemma(gseid="GSE34308", filtered = "true")
## ----eval=TRUE----------------------------------------------------------------
data("example_annotations")
annotations <- make_annotations(example_annotations$gene2Annot,
example_annotations$genes,
example_annotations$annotationlist)
head(colnames(annotations))
## ----eval=TRUE----------------------------------------------------------------
data("example_binary_network")
binary_net <- build_binary_network(example_binary_network$genepairs, example_binary_network$genelist)
hist <- plot_distribution(node_degree(binary_net), b=10,
xlim=c(0,14), ylim=c(0,2), xlab="Node degree")
## ----eval=TRUE----------------------------------------------------------------
extended_net <- extend_network(binary_net)
hist <- plot_distribution(node_degree(extended_net), b=10, xlab="Node degree", )
## ----eval=TRUE----------------------------------------------------------------
semantic_net <- build_semantic_similarity_network(annotations, example_binary_network$genelist)
hist <- plot_distribution(node_degree(semantic_net), b=20, xlab="Node degree", bars=TRUE)
## ----eval=FALSE---------------------------------------------------------------
# data("example_coexpression")
# coexp_net <- build_coexp_expressionSet(exprsSet, genelist, method="spearman", flag="rank")
# # or
# coexp_net <- build_coexp_network(exprs, genelist, method="spearman", flag="rank")
## ----eval=TRUE----------------------------------------------------------------
data("example_neighbor_voting")
network <- example_neighbor_voting$network
gba_auc_nv <- neighbor_voting(annotations, network, nFold=3, output="AUROC")
# or
gba_pr_nv <- neighbor_voting(annotations, network, nFold=3, output="PR")
head(gba_auc_nv)
head(gba_pr_nv)
## ----eval=TRUE----------------------------------------------------------------
multifunc_assessment <- calculate_multifunc(annotations)
auc_mf <- auc_multifunc(annotations, multifunc_assessment[,4])
hist <- plot_distribution(auc_mf, xlab="AUROC", med=FALSE, avg=FALSE)
## ----eval=TRUE----------------------------------------------------------------
X <- runif(1000)
Y <- runif(1000) + X*0.3
window <- 50
smoothedxy <- conv_smoother(X,Y, window, xlab="X",ylab="Y")
## ----eval=TRUE----------------------------------------------------------------
filt <- !is.na(gba_auc_nv[,1])
aucA <- gba_auc_nv[filt,1]
aucB <- gba_auc_nv[filt,3]
hist <- plot_distribution(aucA, xlab="AUROCs")
avgs <- plot_density_compare(aucA, aucB, xlab="AUROCs")
plot_value_compare(aucA, aucB)
## ----eval=TRUE, include=FALSE-------------------------------------------------
scores <- 100:1
labels <- sample(c(0,1), 100, replace=TRUE)
labels[1:13]<-1
labels[18:30]<-1
## ----eval=TRUE----------------------------------------------------------------
roc <- plot_roc(scores, labels)
## ----eval=FALSE---------------------------------------------------------------
# scores <- predictions(labels, network)
# plot_roc_overlay(scores, labels)
## ----eval=TRUE----------------------------------------------------------------
roc <- get_roc(scores, labels)
## ----eval=TRUE----------------------------------------------------------------
auroc <- get_auc(roc[,1], roc[,2])
print(auroc)
## ----eval=TRUE----------------------------------------------------------------
auroc <- auroc_analytic(scores, labels)
print(auroc)
## ----eval=TRUE----------------------------------------------------------------
prc <- get_prc(scores, labels)
prc <- plot_prc(scores, labels)
## ----eval=TRUE----------------------------------------------------------------
auprc <- auprc(scores, labels)
print(auprc)
## ----eval=TRUE----------------------------------------------------------------
fbeta <- fmeasure(prc[,1], prc[,2], beta=1)
## ----eval=TRUE----------------------------------------------------------------
nd <- node_degree(network)
hist <- plot_distribution(nd, xlab="Node degree", med = FALSE)
## ----eval=TRUE----------------------------------------------------------------
assort <- assortativity(network)
print(assort)
## ----eval=FALSE---------------------------------------------------------------
# data("biogrid")
# data("GO.human")
## ----eval=FALSE---------------------------------------------------------------
# genelist <- make_genelist(biogrid)
# gene_network <- make_gene_network(biogrid,genelist)
## ----eval=FALSE---------------------------------------------------------------
# annotations <- make_annotations(GO.human[,c(2,3)],genelist,goterms)
## ----eval=FALSE---------------------------------------------------------------
# GO_groups_voted <- run_GBA(gene_network, annotations)
## ----eval=FALSE---------------------------------------------------------------
# GO_multifunc_assessment <- calculate_multifunc(annotations)
## ----eval=FALSE---------------------------------------------------------------
# # For genes
# optimallist_genes <- GO_multifunc_assessment[,4]
# auc_GO_mf <- auc_multifunc(annotations, GO_multifunc_assessment)
#
# # Or for GO groups
# GO_genes_multifunc_assessment <- calculate_multifunc(t(annotations) )
# optimallist_GO <- GO_genes_multifunc_assessment[,4]
# auc_gene_mf <- auc_multifunc(t(annotations), optimallist_GO)
#
## ----eval=FALSE---------------------------------------------------------------
# auc_GO_nv <- GO_groups_voted[,1]
# plot_distribution(auc_GO_nv, xlab="Neighbor voting AUROC ",
# ylab="Number of functional terms",
# b=30, xlim=c(0.4,1), ylim=c(0, 440), col="gray64",
# density=FALSE, avg=FALSE, bars=TRUE)
## ----eval=FALSE---------------------------------------------------------------
# plot_distribution(auc_GO_mf, xlab="Optimal GO Ranking AUROC",
# ylab="Number of functional terms",
# b=20, xlim=c(0.2,1), ylim=c(0,4400), col="gray64",
# density=FALSE, avg=FALSE, bars=TRUE)
## ----eval=FALSE---------------------------------------------------------------
# data("attr.human")
# genelist <- unique(attr.human$entrezID[attr.human$type == "protein_coding"
# & !is.na(attr.human$entrezID)] )
# exprs <- get_expression_matrix_from_GEO("GSE34308")
## ----eval=FALSE---------------------------------------------------------------
# network <- build_coexp_network(exprs, gene.list)
# network <- build_coexp_expressionSet(exprsSet, genelist)
## ----eval=FALSE---------------------------------------------------------------
# assort <- assortativity(network)
# nd <- node_degrees(network)
# plot_density(nd)
## ----eval=FALSE---------------------------------------------------------------
# data("GO.human")
# annotations <- make_annotations(GO.human[,c(2,3)],genelist,goterms)
# annotations_sub <- filter_network_cols(annotations, min=20, max=300)
# GO_groups_voted <- run_GBA(network, annotations_sub)
## ----eval=FALSE---------------------------------------------------------------
# data("biogrid")
# data("GO.human")
# data("ortho")
#
# # Prepare gene network and gene labels/annotations
# genelist <- make_genelist(BIOGRID )
# gene_network <- make_gene_network(BIOGRID, genelist)
# annotations <- make_annotations(GO.human[,c(2,3)],genelist,goterms)
# # neighbor voting
# nv_results <- run_GBA(gene_network, annotations)
# mf_optimal <- calculate_multifunc(annotations)
# optimal_list<- as.numeric(mf_optimal[,4])
# mf_results <- auc_multifunc(annotations, optimal_list)
# # neighbor voting, ortholog constraints (e.g. yeast)
# annotations_yeast <- filter_orthologs(annotations, genelist, ortho_yeast)
#
# nv_results_yeast <- run_GBA(gene_network, annotations_yeast)
# mf_optimal_yeast <- calculate_multifunc(annotations_yeast)
# optimal_list_yeast<- as.numeric(mf_optimal_yeast[,4])
# mf_results_yeast <- auc_multifunc(annotations_yeast, optimal_list_yeast)
## ----eval=FALSE---------------------------------------------------------------
# # Load data
# load("net.RData")
# load("ortho.RData")
#
# # Extend network
# ext_gene_network <- extend_network(gene_network, max=6)
# # neighbor voting
# nv_results <- run_GBA(ext_gene_network, annotations)
# # neighbor voting, ortholog constraints (e.g. yeast)
# annotations_yeast <- filter_orthologs(annotations, genelist, ortho_yeast)
# nv_results_yeast <- run_GBA(ext_gene_network, annotations_yeast)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.