Nothing
#' Obtain expression matrix from GEO database
#'
#' The function downloads and parses the expression matrix from the GEO file
#' specified by the GEO ID
#'
#' @param gseid GEO ID of the expression experiment
#'
#' @return list of genes and the expression matrix
#'
#' @keywords expression experiment
#' GEO
#' GSE
#'
#' @import GEOquery limma arrayQualityMetrics impute MASS stats graphics grDevices
#'
#' @export
#'
#'
get_expression_matrix_from_GEO <- function(gseid) {
# Get the family_soft.gz file for the GSEid
gseSOFT <- getGEO(GEO = gseid, GSEMatrix = FALSE)
# Get the properties of the microarray samples
descrip = Columns(GSMList(gseSOFT)[[1]])$Description[2]
names = names(GSMList(gseSOFT))
platforms = lapply(GSMList(gseSOFT), function(x) {
Meta(x)$platform
})
gplid = unlist(unique(platforms))[1] # take the first platform, sometimes mutliple platforms, this will fail s
# Get the probeset and corresponding ORFs This is not consistent across platforms (ie the gplids),
# may cause issues
probesets <- Table(GPLList(gseSOFT)[[gplid]])$ID
ORF <- Table(GPLList(gseSOFT)[[gplid]])$ENTREZ_GENE_ID
# ORF <- Table(GPLList(gseSOFT)[[gplid]])$Entrez_Gene_ID
# For each sample, get the expression levels for the probes
data.matrix <- do.call("cbind",
lapply(GSMList(gseSOFT),
function(x) {
tab <- Table(x)
mymatch <- match(probesets, tab$ID_REF)
return(tab$VALUE[mymatch])
}
))
# Sometimes the data is not a numeric variable, convert
data.matrix <- apply(data.matrix, 2, function(x) {
as.numeric(as.character(x))
})
# Label rows and columns
rownames(data.matrix) <- probesets
colnames(data.matrix) <- names(GSMList(gseSOFT))
# Use probes with gene ids, filter out probes with multiple ORFs and probes with no ORFs
use_probe <- which(is.na(ORF) == FALSE & match(ORF, "", nomatch = 0) == 0 & regexpr("///", ORF) ==
-1)
data.matrix <- data.matrix[use_probe, ]
rownames(data.matrix) <- ORF[use_probe]
# Check to see if data is log2 transformed
Med <- median(data.matrix, na.rm = TRUE)
if (Med > 16) { data.matrix <- log2(data.matrix)}
# Normalize between arrays so that the intensities or log-ratios have similar distributions
na.length <- length(which(is.na(data.matrix) == TRUE))
if (na.length > 0) {
data.matrix <- impute.knn(data.matrix)$data
}
data.matrix <- normalizeBetweenArrays(data.matrix)
# Aggregate multiple genes, using median expression value
tmp <- aggregate(data.matrix, list(rownames(data.matrix)), median)
data.matrix <- as.matrix(tmp[, -1])
genes <- tmp[, 1]
rownames(data.matrix) <- genes
# Clean up
rm(tmp, na.length, use_probe, ORF)
return(list(genes, data.matrix))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.