Nothing
## ----echo=F-------------------------------------------------------------------
suppressPackageStartupMessages({
suppressWarnings({
library(DiscoRhythm)
})
})
indata <- discoGetSimu()
knitr::kable(head(indata[,1:6]),format = "markdown") # Inspect the data
## ----echo=F-------------------------------------------------------------------
kableExtra::column_spec(knitr::kable(head(indata[,1:6])),
1, background = "#FDB813")
## ----echo=F-------------------------------------------------------------------
kableExtra::column_spec(knitr::kable(head(indata[,1:6])),
2:6, background = "#FDB813")
## ----echo=F-------------------------------------------------------------------
kableExtra::column_spec(
kableExtra::row_spec(
knitr::kable(head(indata[,1:6])),
0, background = "#FDB813"),
1, background = "inherit")
## ----echo=F,message=FALSE-----------------------------------------------------
knitr::kable(head(SummarizedExperiment::colData(
discoDFtoSE(indata)
)), format = "markdown")
## ----interface, echo=F, fig.cap="Screenshot of the initial DiscoRhythm landing page."----
knitr::include_graphics("IntroductionSS.jpg")
## ----echo=FALSE---------------------------------------------------------------
# Figure caption template
figcap="Screenshot of the '%s' section of the DiscoRhythm interface."
## ----selectData, echo=FALSE, fig.cap=sprintf(figcap,'Select Data')------------
knitr::include_graphics("selectDataSS.jpg")
## ----corQC, echo=FALSE, fig.cap=sprintf(figcap,'Inter-sample Correlation')----
knitr::include_graphics("IntersampleCorrelationSS.jpg")
## ----pcaQC, echo=F, fig.cap=sprintf(figcap,'PCA')-----------------------------
knitr::include_graphics("PCASS.jpg")
## ----filteringSummary, echo=F, fig.cap=sprintf(figcap,'Filtering Summary')----
knitr::include_graphics("FilteringSummarySS.jpg")
## ----repAnalysis, echo=F, fig.cap=sprintf(figcap,'Row Selection')-------------
knitr::include_graphics("RowSelectionSS.jpg")
## ----domPer, echo=F, fig.cap=sprintf(figcap,'Period Detection')---------------
knitr::include_graphics("PeriodDetectionSS.jpg")
## ----PCfits, echo=F, fig.cap=sprintf(figcap,'PC Cosinor Fits')----------------
knitr::include_graphics("PCfitsSS.jpg")
## ----detOsc, echo=F, fig.cap=sprintf(figcap,'Oscillation Detection (Preview)')----
knitr::include_graphics("OscillationDetectionPrevSS.jpg")
## ----echo=FALSE---------------------------------------------------------------
mat <- t(DiscoRhythm::discoODAexclusionMatrix)
knitr::kable(mat,format = "markdown")
## ----detOscResults, echo=F, fig.cap=sprintf(figcap,'Oscillation Detection')----
knitr::include_graphics("OscillationDetectionSS.jpg")
## -----------------------------------------------------------------------------
library(DiscoRhythm)
indata <- discoGetSimu()
knitr::kable(head(indata[,1:6]), format = "markdown") # Inspect the data
## -----------------------------------------------------------------------------
se <- discoDFtoSE(indata)
## -----------------------------------------------------------------------------
selectDataSE <- discoCheckInput(se)
## ----message=FALSE------------------------------------------------------------
library(SummarizedExperiment)
Metadata <- colData(selectDataSE)
knitr::kable(discoDesignSummary(Metadata),format = "markdown")
## -----------------------------------------------------------------------------
CorRes <- discoInterCorOutliers(selectDataSE,
cor_method="pearson",
threshold=3,
thresh_type="sd")
## -----------------------------------------------------------------------------
PCAres <- discoPCAoutliers(selectDataSE,
threshold=3,
scale=TRUE,
pcToCut = c("PC1","PC2","PC3","PC4"))
## -----------------------------------------------------------------------------
discoPCAres <- discoPCA(selectDataSE)
## -----------------------------------------------------------------------------
FilteredSE <- selectDataSE[,!PCAres$outliers & !CorRes$outliers]
DT::datatable(as.data.frame(
colData(selectDataSE)[PCAres$outliers | CorRes$outliers,]
))
knitr::kable(discoDesignSummary(colData(FilteredSE)),format = "markdown")
## -----------------------------------------------------------------------------
ANOVAres <- discoRepAnalysis(FilteredSE,
aov_method="Equal Variance",
aov_pcut=0.05,
aov_Fcut=1,
avg_method="Median")
FinalSE <- ANOVAres$se
## -----------------------------------------------------------------------------
PeriodRes <- discoPeriodDetection(FinalSE,
timeType="linear",
main_per=24)
## -----------------------------------------------------------------------------
OVpca <- discoPCA(FinalSE)
OVpcaSE <- discoDFtoSE(data.frame("PC"=1:ncol(OVpca$x),t(OVpca$x)),
colData(FinalSE))
knitr::kable(discoODAs(OVpcaSE,period = 24,method = "CS")$CS,
format = "markdown")
## -----------------------------------------------------------------------------
discoODAres <- discoODAs(FinalSE,
period=24,
method="CS",
ncores=1,
circular_t=FALSE)
## ----echo=F-------------------------------------------------------------------
batchscript=system.file("", "DiscoRhythm_batch.R",
package = "DiscoRhythm",
mustWork = TRUE)
## ----code = readLines(batchscript), eval= FALSE-------------------------------
# ######################################################################
# # Intended for use by discoBatch or through the DiscoRhythm_report.Rmd
# # Includes all R code for the DiscoRhythm data processing
# # Expects all arguments to discoBatch in the environment
# #####################################################################
#
# library(DiscoRhythm)
#
# # Preprocess inputs
# selectDataSE <- discoCheckInput(discoDFtoSE(indata))
#
# # Intersample correlations
# CorRes <- discoInterCorOutliers(selectDataSE,cor_method,
# cor_threshold,cor_threshType)
#
# # PCA for outlier detection
# PCAres <- discoPCAoutliers(selectDataSE,pca_threshold,pca_scale,pca_pcToCut)
# PCAresAfter <- discoPCA(selectDataSE[,!PCAres$outliers])
#
# # Removing the outliers from the main data.frame and metadata data.frame
# FilteredSE <- selectDataSE[,!PCAres$outliers & !CorRes$outliers]
#
# # Running ANOVA and merging replicates
# ANOVAres <- discoRepAnalysis(FilteredSE, aov_method,
# aov_pcut, aov_Fcut, avg_method)
#
# # Data to be used for Period Detection and Oscillation Detection
# FinalSE <- ANOVAres$se
#
# # Perform PCA on the final dataset
# OVpca <- discoPCA(FinalSE)
#
# # Period Detection
# PeriodRes <- discoPeriodDetection(FinalSE,
# timeType,
# main_per)
#
# # Oscillation Detection
# discoODAres <- discoODAs(FinalSE,
# circular_t = timeType=="circular",
# period=osc_period,
# osc_method,ncores)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.