Nothing
# Function that generates synthetic data from a bimodal distribution.
# centers: A list with two items, each item a vector specifying the center of a
# data cluster.
# prop: A scalar determining relative number of data points in the two clusters
# dataCols: A scalar determining the number of dimensions. Superfluous if
# "centers" is provided.
# observations: A scalar determining the number of sampled data points.
generateBimodalData <- function(centers, prop = 0.3, dataCols = 5,
observations = 10000) {
if (missing(centers)) {
centers <- rbind(runif(dataCols) + 50, runif(dataCols) - 50)
} else {
dataCols <- ncol(centers)
}
stopifnot(nrow(centers) == 2)
ids <- c(
rep(1, floor(prop * observations)),
rep(2, observations - floor(prop * observations))
)
rands <- matrix(
rnorm(observations * dataCols, mean = 0, sd = 1),
observations, dataCols
)
pop1 <- rands[seq_len(floor(prop * observations)), ] +
rep(centers[1, ], each = floor(prop * observations))
pop2 <- tail(rands, n = observations - floor(prop * observations)) +
rep(centers[2, ], each = observations - floor(prop * observations))
samples <- rbind(pop1, pop2)
result <- list(samples, ids)
names(result) <- c("samples", "ids")
return(result)
}
# Function that generates synthetic data, divided over a number of cluster with
# increasing number of zero-dimensions (starting from 0). The sampled points are
# generated equally between the clusters.
# modeN: A scalar determining the number of clusters.
# dataCols: A scalar determing the number of dimensions. DataCols must be
# greater than modeN, to avoid clusters with only zeros.
# obsrevations: A scalar determining the number of sampled data points.
generateSparseData <- function(modeN = 5, dataCols = 100,
observations = 10000) {
# Check if input ok
if ((observations / modeN) %% 1 != 0) {
stop("Observations has to be divisible by modeN")
}
obsPerMode <- observations / modeN
# generate the centers numbers
randInts <- sample(c(-50, 50), dataCols * modeN, replace = TRUE)
centers <- matrix(randInts, nrow = modeN, byrow = TRUE)
# put in sparsity
for (i in seq_len(modeN)) {
inds <- sample(seq_len(dataCols), i)
centers[i, inds] <- 0
}
# generate the data
samples <- matrix(0, nrow = observations, ncol = dataCols)
ids <- matrix(0, nrow = observations, ncol = 1)
for (i in seq_len(modeN)) {
temp <- matrix(
rnorm(observations * dataCols, mean = 0, sd = 1),
obsPerMode, dataCols
)
samples[seq((1 + obsPerMode * (i - 1)), obsPerMode * (i)), ] <- temp +
rep(centers[i, ], each = obsPerMode)
ids[seq((1 + obsPerMode * (i - 1)), obsPerMode * (i)), ] <- i
}
result <- list(samples, ids, centers)
names(result) <- c("samples", "ids", "centers")
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.