Nothing
# Used internally in dScale.
# The purpose of having this deeper function is to easily allow for different
# input formats, such as vectors and dataframes.
# For information about the parameters, see dScale.
dScaleCoFunction <- function(x, control, scale, robustVarScale, truncate,
center, multiplicationFactor,
returnCenter = FALSE) {
if (is.logical(scale) && scale == FALSE) {
if (is.logical(truncate)) {
responseVector <- multiplicationFactor * x
}
if (length(truncate) == 2) {
xTruncReal <- truncateData(x, control,
lowQuantile = truncate[1],
highQuantile = truncate[2]
)
responseVector <- multiplicationFactor * xTruncReal
}
}
if (length(scale) == 2) {
# Define quantile
bottom <- quantile(control, probs = scale[1], se = FALSE, na.rm = TRUE)
top <- quantile(control, probs = scale[2], se = FALSE, na.rm = TRUE)
if (robustVarScale == FALSE) {
if (is.logical(truncate)) {
responseVector <- multiplicationFactor *
((x - bottom) / (top - bottom))
}
if (length(truncate) == 2) {
xTruncReal <- truncateData(x, control,
lowQuantile = truncate[1],
highQuantile = truncate[2]
)
responseVector <- multiplicationFactor *
((xTruncReal - bottom) / (top - bottom))
}
}
if (robustVarScale) {
# First truncate the data to the
# quantiles defined by the quantiles
xTruncated <- truncateData(x, control,
lowQuantile = scale[1],
highQuantile = scale[2]
)
sdxTruncated <- sd(xTruncated)
# Now the data is scaled
if (is.logical(truncate)) {
responseVector <- multiplicationFactor * x / sdxTruncated
}
if (length(truncate) == 2) {
xTruncReal <- truncateData(x, control,
lowQuantile = truncate[1],
highQuantile = truncate[2]
)
responseVector <- multiplicationFactor *
xTruncReal / sdxTruncated
}
}
}
if (center == "mean") {
meanValue <- mean(responseVector)
responseVector <- responseVector - meanValue
if (returnCenter) {
responseList <- list(responseVector, meanValue)
}
}
if (center == "peak") {
# The peak of the data is defined
if (length(x) < 500) {
nBreaks <- 10
} else {
nBreaks <- length(x) / 50
}
histdata <- hist(responseVector,
breaks = nBreaks, plot = FALSE
)
zeroPosition <- histdata$mids[match(
max(histdata$counts),
histdata$counts
)]
# And the position for this this peak is
# subtracted from all points
responseVector <- responseVector -
zeroPosition
if (returnCenter) {
responseList <- list(
responseVector,
zeroPosition
)
}
}
if (returnCenter == FALSE) {
return(responseVector)
} else {
return(responseList)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.