Nothing
decon.bootstrap <- function(data.set, possible.signatures, n.sig, n.iter) {
if (is.null(n.iter)) { n.iter <- 100 }
if (n.sig >= nrow(possible.signatures)) { stop ("attempt to sample too many transcripts from candidate transcripts") }
## create an array to store the outcome from each bootstrap interval
sim.proportions <- array(dim=c(ncol(data.set), ncol(possible.signatures), n.iter))
## run the bootstrap; store each matrix in sim.proportions
for (i in 1:n.iter){
signatures.alt <- possible.signatures[sample(nrow(possible.signatures), n.sig),]
sim.proportions[,,i] <- DeconRNASeq (data.set, signatures.alt, checksig=FALSE, fig = FALSE)$out.all
}
## create another 3 dimensional array to store means and 95% confidence intervals
sim.estimates <- array(dim=c(ncol(data.set), ncol(possible.signatures), 3),
dimnames=list(colnames(data.set),colnames(possible.signatures), c("mean","lower CI","upper CI")))
## loop over the 1st two dimensions of the simulated data
## compute mean and confidence intervals across the iterations
for (i in 1:dim(sim.estimates)[1]) {
for (j in 1:dim(sim.estimates)[2]) {
this.t <- t.test(sim.proportions[i,j,])
sim.estimates[i,j,1] <- this.t$estimate
sim.estimates[i,j,2] <- this.t$conf.int[1]
sim.estimates[i,j,3] <- this.t$conf.int[2]
}
}
return(sim.estimates)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.