Nothing
#' @title Deconvolves expressions of each individual sample for unknown component
#'
#' @description This function is designed to estimate the deconvolved expressions
#' of individual mixed tumor samples for unknown component for each gene.
#'
#' @param data.Y A SummarizedExperiment object of expression data from mixed
#' tumor samples. It is a \eqn{G} by \eqn{My} matrix where \eqn{G} is the number
#' of genes and \eqn{My} is the number of mixed samples. Samples with the same
#' tissue type should be placed together in columns.
#' @param data.N1 A SummarizedExperiment object of expression data
#' from reference component 1 (e.g., normal). It is a \eqn{G} by \eqn{M1} matrix
#' where \eqn{G} is the number of genes and \eqn{M1} is the number of samples
#' for component 1.
#' @param data.N2 A SummarizedExperiment object of expression data from
#' additional reference samples. It is a \eqn{G} by \eqn{M2} matrix where
#' \eqn{G} is the number of genes and \eqn{M2} is the number of samples for
#' component 2. Component 2 is needed only for running a three-component model.
#' @param givenpi A vector of proportions for all mixed tumor samples.
#' In two-component analysis, it gives the proportions of the unknown reference
#' component, and in three-component analysis, it gives the proportions for the
#' two known components.
#' @param nbin Number of bins used in numerical integration for computing
#' complete likelihood. A larger value increases accuracy in estimation but
#' increases the running time, especially in a three-component deconvolution
#' problem. The default is 50.
#' @param nthread The number of threads used for deconvolution when OpenMP is
#' available in the system. The default is the number of whole threads minus one.
#' In our no-OpenMP version, it is set to 1.
#'
#' @return
#' \item{decovExprT}{A matrix of deconvolved expression profiles corresponding to
#' T-component in mixed samples for a given subset of genes. Each row
#' corresponds to one gene and each column corresponds to one sample.}
#' \item{decovExprN1}{A matrix of deconvolved expression profiles corresponding to
#' N1-component in mixed samples for a given subset of genes. Each row
#' corresponds to one gene and each column corresponds to one sample.}
#' \item{decovExprN2}{A matrix of deconvolved expression profiles corresponding to
#' N2-component in mixed samples for a given subset of genes in a
#' three-component setting. Each row corresponds to one gene and each
#' column corresponds to one sample.}
#' \item{decovMu}{A matrix of estimated \eqn{Mu} of log2-normal distribution for
#' both known (\eqn{MuN1, MuN2}) and unknown component (\eqn{MuT}). Each row
#' corresponds to one gene.}
#' \item{decovSigma}{Estimated \eqn{Sigma} of log2-normal distribution for both
#' known (\eqn{SigmaN1, SigmaN2}) and unknown component (\eqn{SigmaT}). Each
#' row corresponds to one gene.}
#'
#' @author Zeya Wang, Wenyi Wang
#'
#' @seealso http://bioinformatics.mdanderson.org/main/DeMixT
#'
#' @examples
#' # Example 1: two-component deconvolution given proportions
#' data(test.data.2comp)
#' givenpi <- c(t(as.matrix(test.data.2comp$pi[-2,])))
#' res.S2 <- DeMixT_S2(data.Y = test.data.2comp$data.Y,
#' data.N1 = test.data.2comp$data.N1,
#' data.N2 = NULL,
#' givenpi = givenpi,
#' nbin = 50)
#' #
#' # Example 2: three-component deconvolution given proportions
#' # data(test.data.3comp)
#' # givenpi = c(t(test.data.3comp$pi[-3,]))
#' # res <- DeMixT_S2(data.Y = test.data.3comp$data.Y,
#' # data.N1 = test.data.3comp$data.N1,
#' # data.N2 = test.data.3comp$data.N2,
#' # givenpi = givenpi,
#' # nbin = 50)
#'
#' @references Wang Z, Cao S, Morris J S, et al. Transcriptome Deconvolution of
#' Heterogeneous Tumor Samples with Immune Infiltration. iScience, 2018, 9: 451-460.
#'
#' @keywords DeMixT_S2
#'
#' @export
DeMixT_S2 <- function(data.Y, data.N1, data.N2 = NULL,
givenpi, nbin = 50,
nthread = parallel::detectCores() - 1)
{
filter.out = TRUE
filter.option = 1
data.Y <- SummarizedExperiment::assays(data.Y)[[1]]
data.N1 <- SummarizedExperiment::assays(data.N1)[[1]]
if (!is.null(data.N2)){
data.N2 <- SummarizedExperiment::assays(data.N2)[[1]]
}
if (is.null(rownames(data.Y))) {
rownames(data.Y) <- paste('Gene', seq = seq(1, nrow(data.Y)))
rownames(data.N1) <- paste('Gene', seq = seq(1, nrow(data.N1)))
if(!is.null(data.N2)){
rownames(data.N2) <- paste('Gene', seq = seq(1, nrow(data.N2)))
}
}
if (is.null(colnames(data.Y))) {
colnames(data.Y) <- paste('Sample', seq = seq(1, ncol(data.Y)))
colnames(data.N1) <- paste('Sample', seq = seq(1, ncol(data.N1)))
if(!is.null(data.N2)){
colnames(data.N2) <- paste('Sample', seq = seq(1, ncol(data.N2)))
}
}
sample.id <- colnames(data.Y)
if (is.null(data.N2)) {
inputdata <- cbind(data.N1, data.Y)
groupid <- c(rep(1, ncol(data.N1)), rep(3, ncol(data.Y)))
}else {
inputdata <- cbind(data.N1, data.N2, data.Y)
groupid <- c(rep(1, ncol(data.N1)), rep(2, ncol(data.N2)),
rep(3, ncol(data.Y)))
}
if (filter.option == 1) {
index <- apply(inputdata, 1, function(x) sum(x <= 0) ==
0)
inputdata <- inputdata[index, ]
data.N1 <- data.N1[index, ]
if (!is.null(data.N2))
data.N2 <- data.N2[index, ]
data.Y <- data.Y[index, ]
}else if (filter.option == 2) {
inputdata <- inputdata + 1
data.N1 <- data.N1 + 1
if (!is.null(data.N2))
data.N2 <- data.N2 + 1
data.Y <- data.Y + 1
}else {
stop("The argument filter.option can only be 1 or 2")
}
if (is.null(data.N2)) {
if (dim(inputdata)[1] == 1) {
inputdata <- t(as.matrix(inputdata[apply(data.N1,
1, function(x) length(unique(x)) > 1), ]))
}
else {
inputdata <- inputdata[apply(data.N1, 1, function(x)
length(unique(x)) > 1), ]
}
}else {
if (dim(inputdata)[1] == 1) {
inputdata <- t(as.matrix(inputdata[apply(data.N1,
1, function(x) length(unique(x)) > 1) & apply(data.N2,
1, function(x) length(unique(x)) > 1), ]))
}
else {
inputdata <- inputdata[apply(data.N1, 1, function(x)
length(unique(x)) > 1) & apply(data.N2,
1, function(x) length(unique(x)) > 1), ]
}
}
gene.id <- rownames(inputdata)
inputdata <- as.matrix(inputdata)
res <- Optimum_KernelC(inputdata, groupid, setting.pi = 1, nspikein = 0,
givenpi = givenpi, givenpiT = rep(0, ncol(data.Y)), niter = 1, ninteg = nbin,
tol = 1e-05, nthread = nthread)
decovExprT <- res$decovExprT
decovExprT[which(decovExprT < 0,arr.ind = TRUE)] <- 0
colnames(decovExprT) <- sample.id
row.names(decovExprT) <- gene.id
decovExprN1 <- res$decovExprN1
decovExprN1[which(decovExprN1 < 0,arr.ind = TRUE)] <- 0
colnames(decovExprN1) <- sample.id
row.names(decovExprN1) <- gene.id
decovExprN2 <- res$decovExprN2
decovExprN2[which(decovExprN2 < 0,arr.ind = TRUE)] <- 0
colnames(decovExprN2) <- sample.id
row.names(decovExprN2) <- gene.id
if (is.null(data.N2)) {
decovMuN <- rowMeans(log2(data.N1[gene.id, ]))
decovSigmaN <- apply(log2(data.N1[gene.id, ]), 1 , sd)
decovMu <- cbind(decovMuN, res$decovMu)
colnames(decovMu) <- c("MuN1", "MuT")
row.names(decovMu) <- gene.id
decovSigma <- cbind(decovSigmaN, res$decovSigma)
colnames(decovSigma) <- c("SigmaN1", "SigmaT")
row.names(decovSigma) <- gene.id
filter.in <- rep(TRUE, nrow(inputdata))
if (filter.out == TRUE) filter.in <- (decovMuN - res$decovMu <= 4)
return(list(decovExprT = decovExprT[filter.in, ], decovExprN1 =
decovExprN1[filter.in, ], decovExprN2 = decovExprN2[filter.in, ],
decovMu = decovMu[filter.in, ], decovSigma = decovSigma[filter.in, ]))
}else {
decovMuN1 <- rowMeans(log2(data.N1[gene.id,]))
decovSigmaN1 <- apply(log2(data.N1[gene.id,]), 1, sd)
decovMuN2 <- rowMeans(log2(data.N2[gene.id,]))
decovSigmaN2 <- apply(log2(data.N2[gene.id,]), 1, sd)
decovMu <- cbind(decovMuN1, decovMuN2, res$decovMu)
colnames(decovMu) <- c("MuN1", "MuN2", "MuT")
row.names(decovMu) <- gene.id
decovSigma <- cbind(decovSigmaN1, decovSigmaN2, res$decovSigma)
colnames(decovSigma) <- c("SigmaN1", "SigmaN2", "SigmaT")
row.names(decovSigma) <- gene.id
return(list(decovExprT = decovExprT, decovExprN1 = decovExprN1,
decovExprN2 = decovExprN2, decovMu = decovMu,
decovSigma = decovSigma))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.