Description Usage Arguments References See Also Examples
This function is used to identify differentially expressed genes when users already have the gene expression values (or the number of reads mapped to each gene).
1 2 3 4 5 6 7 | DEGexp(geneExpMatrix1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1",
geneExpMatrix2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2",
method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"),
pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4,
thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"),
replicateExpMatrix1=NULL, geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1",
replicateExpMatrix2=NULL, geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
|
geneExpMatrix1 |
gene expression matrix for replicates of sample1 (or replicate1 when |
geneCol1 |
gene id column in geneExpMatrix1. |
expCol1 |
expression value columns in geneExpMatrix1 for replicates of sample1 (numeric vector).
|
depth1 |
the total number of reads uniquely mapped to genome for each replicate of sample1 (numeric vector),
|
groupLabel1 |
label of group1 on the plots. |
geneExpMatrix2 |
gene expression matrix for replicates of sample2 (or replicate2 when |
geneCol2 |
gene id column in geneExpMatrix2. |
expCol2 |
expression value columns in geneExpMatrix2 for replicates of sample2 (numeric vector).
|
depth2 |
the total number of reads uniquely mapped to genome for each replicate of sample2 (numeric vector),
|
groupLabel2 |
label of group2 on the plots. |
method |
method to identify differentially expressed genes. Possible methods are:
|
pValue |
pValue threshold (for the methods: |
zScore |
zScore threshold (for the methods: |
qValue |
qValue threshold (for the methods: |
thresholdKind |
the kind of threshold. Possible kinds are:
|
foldChange |
fold change threshold on MA-plot (for the method: |
outputDir |
the output directory. |
normalMethod |
the normalization method: |
replicateExpMatrix1 |
matrix containing gene expression values for replicate batch1 (only used when |
geneColR1 |
gene id column in the expression matrix for replicate batch1 (only used when |
expColR1 |
expression value columns in the expression matrix for replicate batch1 (numeric vector) (only used when |
depthR1 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch1 (numeric vector),
|
replicateLabel1 |
label of replicate batch1 on the plots (only used when |
replicateExpMatrix2 |
matrix containing gene expression values for replicate batch2 (only used when |
geneColR2 |
gene id column in the expression matrix for replicate batch2 (only used when |
expColR2 |
expression value columns in the expression matrix for replicate batch2 (numeric vector) (only used when |
depthR2 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch2 (numeric vector),
|
replicateLabel2 |
label of replicate batch2 on the plots (only used when |
rawCount |
a logical value indicating the gene expression values are based on raw read counts or normalized values. |
Benjamini,Y. and Hochberg,Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300.
Jiang,H. and Wong,W.H. (2008) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp2
,
DEGseq
,
getGeneExp
,
readGeneExp
,
GeneExpExample1000
,
GeneExpExample5000
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney
## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver
geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq")
cat("geneExpFile:", geneExpFile, "\n")
outputDir <- file.path(tempdir(), "DEGexpExample")
geneExpMatrix1 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18))
geneExpMatrix2 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16))
geneExpMatrix1[30:32,]
geneExpMatrix2[30:32,]
DEGexp(geneExpMatrix1=geneExpMatrix1, geneCol1=1, expCol1=c(2,3,4,5,6), groupLabel1="kidney",
geneExpMatrix2=geneExpMatrix2, geneCol2=1, expCol2=c(2,3,4,5,6), groupLabel2="liver",
method="LRT", outputDir=outputDir)
cat("outputDir:", outputDir, "\n")
|
Loading required package: qvalue
Loading required package: samr
Loading required package: impute
Loading required package: matrixStats
geneExpFile: /usr/local/lib/R/site-library/DEGseq/extdata/GeneExpExample5000.txt
EnsemblGeneID R1L1Kidney R1L3Kidney R1L7Kidney R2L2Kidney
ENSG00000188976 "ENSG00000188976" "73" "77" "68" "70"
ENSG00000187961 "ENSG00000187961" "15" "15" "13" "12"
ENSG00000187583 "ENSG00000187583" "1" "1" "3" "0"
R2L6Kidney
ENSG00000188976 "82"
ENSG00000187961 "15"
ENSG00000187583 "3"
EnsemblGeneID R1L2Liver R1L4Liver R1L6Liver R1L8Liver
ENSG00000188976 "ENSG00000188976" "34" "56" "45" "55"
ENSG00000187961 "ENSG00000187961" "8" "13" "11" "12"
ENSG00000187583 "ENSG00000187583" "0" "1" "0" "0"
R2L3Liver
ENSG00000188976 "42"
ENSG00000187961 "20"
ENSG00000187583 "2"
Please wait...
gene id column in geneExpMatrix1 for sample1: 1
expression value column(s) in geneExpMatrix1: 2 3 4 5 6
total number of reads uniquely mapped to genome obtained from sample1: 345504 354981 334557 366041 372895
gene id column in geneExpMatrix2 for sample2: 1
expression value column(s) in geneExpMatrix2: 2 3 4 5 6
total number of reads uniquely mapped to genome obtained from sample2: 274430 274486 264999 255041 284205
method to identify differentially expressed genes: LRT
pValue threshold: 0.001
output directory: /work/tmp/tmp/RtmpIDAtzY/DEGexpExample
Please wait ...
Identifying differentially expressed genes ...
Please wait patiently ...
output ...
Done ...
The results can be observed in directory: /work/tmp/tmp/RtmpIDAtzY/DEGexpExample
outputDir: /work/tmp/tmp/RtmpIDAtzY/DEGexpExample
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.