R/limmaAnalysis.R

Defines functions formatLimmaResult limmaCompleteTest make.contrast make.design.3 make.design.2 make.design.1 make.design check.design check.conditions test.design

Documented in check.conditions check.design formatLimmaResult limmaCompleteTest make.contrast make.design make.design.1 make.design.2 make.design.3 test.design

#' This function check xxxxx
#' 
#' @title Check if xxxxxx
#' 
#' @param tab A data.frame which correspond to xxxxxx
#' 
#' @return A list of two items
#' 
#' @author Thomas Burger, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' test.design(Biobase::pData(Exp1_R25_pept)[,1:3])
#' 
#' @export
#' 
test.design <- function(tab){
  valid <- TRUE
  txt <- NULL
  level <- NULL

  level.a  <- factor(tab[,1], ordered = TRUE)
  level.b <- factor(tab[,2], ordered = TRUE)
  name.level.a <- colnames(tab)[1]
  name.level.b <-colnames(tab)[2]

  level.c <- NULL
  level.c <- if(ncol(tab)==3) factor(tab[,3], ordered = TRUE) else NULL
  name.level.c <- if(ncol(tab)==3) colnames(tab)[3] else NULL


  # verification intersection sur B
  ##verification de la non redondance'intersection vide entre les groupes
  uniqueA <- unique(level.a)
  ll <- lapply(uniqueA, function(x){as.character(level.b)[which(level.a==x)]})
  n <- NULL
  for (i in 1:(length(uniqueA)-1)){
    for (j in (i+1):length(uniqueA)){
      n <- c(n,intersect(ll[[i]], ll[[j]]))
    }
  }
  if (length(n) > 0){
    valid <- FALSE
    txt <- c(txt,paste0("The value ", n, " in column '", colnames(tab)[2], "' is not correctly set.\n"))
  }


  #verification si niveau hierarchique inf
  if (length(levels(level.a)) == length(levels(level.b))){
      ## c'est un design de niveau n-1 en fait
      valid <- FALSE
      txt <- c(txt,paste0("The column ",name.level.b, " is not informative. Thus, the design is not of level (n-1).\n"))
    }
  else if (!is.null(level.c)){
    if (length(levels(level.b)) == length(levels(level.c))){
      ## c'est un design de niveau n-1 en fait
      valid <- FALSE
      txt <- c(txt,paste0("The column ",name.level.c, " is not informative. Thus, the design is of level (n-1).\n"))
    }
  }

  #verification si niveau non informatif
  return(list(valid=valid, warn=txt))
}



#' This function check the validity of the conditions
#' 
#' @title Check if the design is valid
#' 
#' @param conds A vector
#' 
#' @return A list
#' 
#' @author Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' check.conditions(Biobase::pData(Exp1_R25_pept)$Condition)
#' 
#' @export
#' 
check.conditions <- function(conds){
  res <- list(valid=TRUE,warn=NULL)

  if (("" %in% conds) || (NA %in% conds)){
      res <- list(valid=FALSE,warn="The conditions are note full filled.")
      return(res)
  }

  # Check if there is at least two conditions
  if (length(unique(conds)) < 2){
    res <- list(valid=FALSE,warn="The design must contain at least two conditions.")
    return(res)
  }


  # check if each condition has at least two values
  nValPerCond <- unlist(lapply(unique(conds), function(x){length(conds[which(conds==x)])}))
  if (all(nValPerCond < 2)){
    res <- list(valid=FALSE,warn="The design must contain at least two values per condition.")
    return(res)
  }

  return(res)
}



#' This function check the validity of the experimental design
#' 
#' @title Check if the design is valid
#' 
#' @param sTab The data.frame which correspond to the pData function of MSnbase
#' 
#' @return A boolean
#' 
#' @author Thomas Burger, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' check.design(Biobase::pData(Exp1_R25_pept)[,1:3])
#' 
#' @export
#' 
check.design <- function(sTab){
  res <- list(valid=FALSE,warn=NULL)

  names <- colnames(sTab)
  level.design <- ncol(sTab)-2


  res <- check.conditions(sTab$Condition)
  if (!res$valid){
    return(res)
  }
  # Check if all the column are fullfilled

  if (level.design == 1){
      if (("" %in% sTab$Bio.Rep) || (NA %in% sTab$Bio.Rep)){
          res <- list(valid=FALSE,warn="The Bio.Rep colmumn are not full filled.")
          return(res)
      }
      }
  else if (level.design == 2){
      if (("" %in% sTab$Bio.Rep) || (NA %in% sTab$Bio.Rep)){
          res <- list(valid=FALSE,warn="The Bio.Rep colmumn are not full filled.")
          return(res)
      }else if (("" %in% sTab$Tech.Rep) || (NA %in% sTab$Tech.Rep)){
          res <- list(valid=FALSE,warn="The Tech.Rep colmumn are not full filled.")
          return(res)
      }
      }
  else if (level.design == 3){
      if (("" %in% sTab$Bio.Rep) || (NA %in% sTab$Bio.Rep)){
          res <- list(valid=FALSE,warn="The Bio.Rep colmumn are not full filled.")
          return(res)
      } else if (("" %in% sTab$Tech.Rep) || (NA %in% sTab$Tech.Rep)){
          res <- list(valid=FALSE,warn="The Tech.Rep colmumn are not full filled.")
          return(res)
      } else if (("" %in% sTab$Analyt.Rep) || (NA %in% sTab$Analyt.Rep)){
          res <- list(valid=FALSE,warn="The Analyt.Rep colmumn are not full filled.")
          return(res)
      }
  }

  # Check if the hierarchy of the design is correct
  if (level.design == 1){res <- test.design(sTab[,c("Condition", "Bio.Rep")])}
  else if (level.design == 2){res <- test.design(sTab[,c("Condition", "Bio.Rep","Tech.Rep")])}
  else if (level.design == 3){
    res <- test.design(sTab[,c("Condition", "Bio.Rep","Tech.Rep")])
    if (res$valid)
    {
      res <- test.design(sTab[,c("Bio.Rep","Tech.Rep", "Analyt.Rep")])

    }
      }

  return(res)
}




#' This function builds the design matrix 
#' 
#' @title Builds the design matrix
#' 
#' @param sTab The data.frame which correspond to the pData function of MSnbase
#' 
#' @return A design matrix
#' 
#' @author Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' make.design(Biobase::pData(Exp1_R25_pept))
#' 
#' @export
make.design <- function(sTab){

    if (!check.design(sTab)$valid){
      warning("The design matrix is not correct.")
      warning(check.design(sTab)$warn)
      return(NULL)
      }

  n <- ncol(sTab)
  if (n==1 || n==2){
    stop("Error in design matrix dimensions which must have at least 3 columns.")
  }

  res <- do.call(paste0("make.design.", (n-2)),list(sTab))

  return(res)
}



#' This function builds the design matrix for design of level 1
#' 
#' @title Builds the design matrix for designs of level 1
#' 
#' @param sTab The data.frame which correspond to the pData function of MSnbase
#' 
#' @return A design matrix
#' 
#' @author Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' make.design.1(Biobase::pData(Exp1_R25_pept))
#' 
#' @export
#' 
# make.design.1 <- function(sTab){
#
#   Conditions <- factor(sTab$Condition,  levels=unique(sTab$Condition))
#   nb_cond=length(unique(Conditions))
#   nb_samples <- nrow(sTab)
#
#   #CGet the number of replicates per condition
#   # nb_Rep_decal=rep(0,nb_cond_decal)
#   # for (i in 1:nb_cond_decal){
#   #   nb_Rep_decal[i]=sum((Conditions_decal==unique(Conditions_decal)[i]))
#   # }
#
#   design=matrix(0,nb_samples,nb_cond)
#   #n0_decal=1
#   coln=NULL
#   for (j in 1:nb_cond){
#     test <- rep
#     coln=c(coln,paste("Condition",j,collapse=NULL,sep=""))
#     design[,j]=as.integer(Conditions==unique(Conditions)[j])
#   }
#   colnames(design)=coln
#
#   return(design)
# }


make.design.1 <- function(sTab){
Conditions <- factor(sTab$Condition, ordered = TRUE)
nb_cond=length(unique(Conditions))
nb_samples <- nrow(sTab)

#CGet the number of replicates per condition
nb_Rep=rep(0,nb_cond)
for (i in 1:nb_cond){
  nb_Rep[i]=sum((Conditions==unique(Conditions)[i]))
}

design=matrix(0,nb_samples,nb_cond)
n0=1
coln=NULL
for (j in 1:nb_cond){
  coln=c(coln,paste("Condition",j,collapse=NULL,sep=""))
  design[(n0:(n0+nb_Rep[j]-1)),j]=rep(1,length((n0:(n0+nb_Rep[j]-1))))
  n0=n0+nb_Rep[j]
}
colnames(design)=coln

return(design)

}




#' This function builds the design matrix for design of level 2
#' 
#' @title Builds the design matrix for designs of level 2
#' 
#' @param sTab The data.frame which correspond to the pData function of MSnbase
#' 
#' @return A design matrix
#' 
#' @author Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' \donttest{
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' make.design.2(Biobase::pData(Exp1_R25_pept))
#' }
#' 
#' @importFrom stats model.matrix rnorm
#' 
#' @export
#' 
make.design.2=function(sTab){
  Condition <- factor(sTab$Condition, levels=unique(sTab$Condition))
  RepBio <- factor(sTab$Bio.Rep, levels=unique(sTab$Bio.Rep))

  #Renome the levels of factor
  levels(Condition)=c(1:length(levels(Condition)))
  levels(RepBio)=c(1:length(levels(RepBio)))

  #Initial design matrix
  df <- rep(0,nrow(sTab))
  names(df) <- rownames(sTab)
  design=model.matrix(df~0+Condition:RepBio)

  #Remove empty columns in the design matrix
  design=design[,(apply(design,2,sum)>0)]
  #Remove identical columns in the design matrix
  coldel=-1
  for (i in 1:(length(design[1,])-1)){
    d2=as.matrix(design[,(i+1):length(design[1,])]);
    for (j in 1:length(d2[1,])){
      d2[,j]=d2[,j]-design[,i];
    }
    e=as.matrix(rnorm(length(design[,1]),10,1));
    sd2=t(e)%*%d2
    liste=which(sd2==0)
    coldel=c(coldel,liste+i)
  }
  design=design[,(1:length(design[1,]))!=coldel]
  colnames(design)=make.names(colnames(design))
  return(design)
}




#' This function builds the design matrix for design of level 3
#' 
#' @title Builds the design matrix for designs of level 3
#' 
#' @param sTab The data.frame which correspond to the pData function of MSnbase
#' 
#' @return A design matrix
#' 
#' @author Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' sTab <-cbind(Biobase::pData(Exp1_R25_pept), Tech.Rep=1:6)
#' make.design.3(sTab)
#' 
#' @importFrom stats model.matrix rnorm
#' 
#' @export
#' 
make.design.3 <- function(sTab){

  Condition <- factor(sTab$Condition, levels=unique(sTab$Condition))
  RepBio <- factor(sTab$Bio.Rep, levels=unique(sTab$Bio.Rep))
  RepTech <- factor(sTab$Tech.Rep, levels=unique(sTab$Tech.Rep))


  #Rename the levels of factor
  levels(Condition)=c(1:length(levels(Condition)))
  levels(RepBio)=c(1:length(levels(RepBio)))
  levels(RepTech)=c(1:length(levels(RepTech)))


  #Initial design matrix
  df <- rep(0,nrow(sTab))
  names(df) <- rownames(sTab)
  design=model.matrix(df~0+Condition:RepBio:RepTech)

  #Remove empty columns in the design matrix
  design=design[,(apply(design,2,sum)>0)]

  #Remove identical columns in the design matrix
  coldel=-1
  for (i in 1:(length(design[1,])-1)){
    d2=as.matrix(design[,(i+1):length(design[1,])]);
    for (j in 1:length(d2[1,])){
      d2[,j]=d2[,j]-design[,i];
    }
    e=as.matrix(rnorm(length(design[,1]),10,1));
    sd2=t(e)%*%d2
    liste=which(sd2==0)
    coldel=c(coldel,liste+i)
  }
  design=design[,(1:length(design[1,]))!=coldel]
  colnames(design)=make.names(colnames(design))
  return(design)
}




#' This function builds the contrast matrix
#' 
#' @title Builds the contrast matrix
#' 
#' @param design The data.frame which correspond to the pData function of MSnbase
#' 
#' @param condition xxxxx
#' 
#' @param contrast An integer that Indicates if the test consists of the comparison of each 
#' biological condition versus each of the other ones (Contrast=1; 
#' for example H0:"C1=C2" vs H1:"C1!=C2", etc.) 
#' or each condition versus all others (Contrast=2; e.g.  H0:"C1=(C2+C3)/2" vs
#'  H1:"C1!=(C2+C3)/2", etc. if there are three conditions).
#'  
#' @return A constrat matrix
#' 
#' @author Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' design <- make.design(Biobase::pData(Exp1_R25_pept))
#' conds <- Biobase::pData(Exp1_R25_pept)$Condition
#' make.contrast(design, conds)
#' 
#' @export
#' 
make.contrast <- function(design, condition, contrast=1){
  

  #######################################################
  aggreg.column.design=function(design,Condition){
    nb.cond=length(levels(Condition))
    name.col=colnames(design)
    name.cond=NULL
    nb.col=NULL
    for (i in 1:nb.cond){
      col.select=NULL
      col.name.begin=paste("Condition",i, sep = "")
      nc=nchar(col.name.begin)
      for (j in 1:length(design[1,])){
        if (substr(name.col[j], 1, nc)==col.name.begin){
          col.select=c(col.select,j)
        }
      }
      name.aggreg=NULL
      for (j in 1:length(col.select)){
        name.aggreg=paste(name.aggreg,name.col[col.select[j]],sep="+")
      }
      name.aggreg=substr(name.aggreg, 2, nchar(name.aggreg))
      name.cond=c(name.cond,name.aggreg)
      nb.col=c(nb.col,length(col.select))
    }
    return(list(name.cond,nb.col))
  }



  nb.cond=length(levels(condition))
  r=aggreg.column.design(design,condition)
  label.agg=r[[1]]
  nb.agg=r[[2]]
  k=1

  if (contrast == 1){
  ## Contrast for One vs One
    contra=rep(0,sum(1:(nb.cond-1)))
    for (i in 1:(nb.cond-1)){
      for (j in (i+1):nb.cond){
        contra[k]=c(paste("(",label.agg[i],")/",
                          nb.agg[i],"-(",label.agg[j],")/",
                          nb.agg[j]))
        k=k+1
      }
    }
  } else if (contrast==2){
   ## Contrast for One vs All
    contra=rep(0,nb.cond)
    for (i in 1:(nb.cond)){
      contra[k]=c(paste("(",label.agg[i],")/",nb.agg[i]))
      nb=sum(nb.agg[(1:nb.cond)[(1:nb.cond)!=i]])
      for (j in (1:nb.cond)[(1:nb.cond)!=i]){
        contra[k]=c(paste(contra[k],"-(",label.agg[j],")/",nb))
      }
      k=k+1
    }
  }

  return(contra)
}


##############################################################
#Fonction realisant un test de contrastes entre conditions a l'aide du
#package LIMMA.
#
#En entree:
#qData: tableau de donnees sans valeurs manquantes avec chaque replicat en
#colonne
#Conditions: indique le numero/la lettre de la condition biologique auquel
#appartient chaque replicat

#
#Contrast: indique si l'on souhaite tester chaque condition biologique
#contre chacune (Contrast=1; par exemple H0:"C1=C2" vs H1:"C1!=C2", etc.)
#ou chaque condition contre toutes les autres (Contrast=2; par exemple
#H0:"C1=(C2+C3)/2" vs H1:"C1!=(C2+C3)/2", etc. si on a 3 conditions ).
#
#En sortie :
#Objet fit renvoye par la fonction eBayes de LIMMA.
##QGG, Aout 2015
##############################################################






#' This function is a limmaCompleteTest
#' 
#' @title Computes a hierarchical differential analysis
#' 
#' @param qData A matrix of quantitative data, without any missing values.
#' 
#' @param sTab A dataframe of experimental design (pData()). 
#' 
#' @param comp.type A string that corresponds to the type of comparison. 
#' Values are: 'anova1way', 'OnevsOne' and 'OnevsAll'; default is 'OnevsOne'.
#' 
#' @return A list of two dataframes : logFC and P_Value. The first one contains
#' the logFC values of all the comparisons (one column for one comparison), the second one contains
#' the pvalue of all the comparisons (one column for one comparison). The names of the columns for those two dataframes
#' are identical and correspond to the description of the comparison. 
#' 
#' @author Hélène Borges, Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' obj <- Exp1_R25_pept
#' qData <- Biobase::exprs(obj)
#' sTab <- Biobase::pData(obj)
#' limma <- limmaCompleteTest(qData, sTab, comp.type='anova1way')
#' 
#' @export
#' 
#' @import limma
#' 
limmaCompleteTest <- function(qData, sTab, comp.type="OnevsOne"){
  
  ## save the current order of columns
  
  # reoder columns to group conditions
  
  switch(comp.type,
         OnevsOne = contrast <- 1,
         OnevsAll = contrast <- 2)
  sTab.old <- sTab
  conds <- factor(sTab$Condition, levels=unique(sTab$Condition))
  sTab <- sTab[unlist(lapply(split(sTab, conds), function(x) {x['Sample.name']})),]
  qData <- qData[,unlist(lapply(split(sTab.old, conds), function(x) {x['Sample.name']}))]
  conds <- conds[order(conds)]
  
  res.l <- NULL
  
  design.matrix <- make.design(sTab)
  
  if(!is.null(design.matrix)) {
    if(comp.type == 'OnevsOne' || comp.type == "OnevsAll"){
      contra <- make.contrast(design.matrix,condition=conds, contrast)
      cmtx <- limma::makeContrasts(contrasts=contra,
                                   levels=make.names(colnames(design.matrix)))
      fit <- limma::eBayes(limma::contrasts.fit(limma::lmFit(qData, design.matrix), cmtx))
      res.l <- formatLimmaResult(fit, conds, contrast)
    }else if(comp.type == "anova1way"){
      # make the orthogonal contrasts
      contrasts <- tidyr::crossing(A = colnames(design.matrix), B = colnames(design.matrix), .name_repair = "minimal") %>%
        dplyr::filter(A!=B)
      orthogonal_contrasts <- dplyr::filter(contrasts, !duplicated(paste0(pmax(A, B), pmin(A, B)))) %>%
        dplyr::mutate(contrasts = stringr::str_glue("{A}-{B}"))
      # make the contrasts in a format adapted for limma functions
      contrasts_limma_format <- limma::makeContrasts(contrasts = orthogonal_contrasts$contrasts,
                                                     levels = colnames(design.matrix))
      ebayes_fit <- limma::eBayes(limma::contrasts.fit(limma::lmFit(qData, design.matrix), contrasts_limma_format))
      fit_table <- limma::topTable(ebayes_fit, sort.by = "none", number = nrow(qData))
      fit_pvalue <- dplyr::select(fit_table, "anova_1way_pval" = P.Value)
      res.l <- list("logFC" = data.frame("anova_1way_logFC" = matrix(NA, nrow = nrow(fit_pvalue)),
                                         row.names = rownames(fit_pvalue)),
                    "P_Value" = fit_pvalue)
    }
  }
  return(res.l)
}





#' @title xxxx
#' 
#' @param fit xxxx
#' 
#' @param conds xxxx
#' 
#' @param contrast xxxx
#' 
#' @return A list of two dataframes : logFC and P_Value. The first one contains
#' the logFC values of all the comparisons (one column for one comparison), the second one contains
#' the pvalue of all the comparisons (one column for one comparison). The names of the columns for those two dataframes
#' are identical and correspond to the description of the comparison. 
#' 
#' @author Samuel Wieczorek
#' 
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' obj <- Exp1_R25_pept
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=ncol(obj))
#' obj <- mvFilterFromIndices(obj, keepThat)
#' qData <- Biobase::exprs(obj)
#' sTab <- Biobase::pData(obj)
#' limma <- limmaCompleteTest(qData,sTab)
#' 

formatLimmaResult <- function(fit, conds, contrast){

  #res.tmp <- topTable(fit,number=Inf, sort.by="none")
  #res <- cbind(res.tmp[,1:Compa.Nb], fit$p.value)
  #names(res) <- gsub(".", "_", names(res), fixed=TRUE)
  res <- cbind(fit$coefficients, fit$p.value)

  #how many comparisons have been done (and thus how many columns of pval)
  Compa.Nb <- dim(fit$p.value)[2]
  #empty colnames vector
  cn<-c()
  for (i in 1:Compa.Nb){

    #not the same syntax to pars if Contast=1 or Contrast=2
    if(contrast==1){
      compa <- stringr::str_match_all(colnames(fit$p.value)[i],"[[:space:]]Condition([[:digit:]]+)")[[1]]
      cn[i] <- paste(unique(conds)[as.numeric(compa[1,2])], "_vs_",unique(conds)[as.numeric(compa[2,2])], sep="")
    }
    if(contrast==2){
      #hierarchic only
      #compa <- stringr::str_match_all(colnames(fit$p.value)[i], "[[:space:]]Condition([[:digit:]]+)[[:space:]]")[[1]]
      #cn[i]<-paste(levels(Conditions)[as.numeric(compa[1,2])], "vs(all-",levels(Conditions)[as.numeric(compa[1,2])], ")", sep="")

      #hier and non hier
      compa <- stringr::str_match_all(colnames(fit$p.value)[i], "[[:space:]]Condition([[:digit:]]+)")[[1]]
      cn[i]<-paste(unique(conds)[as.numeric(compa[1,2])], "_vs_(all-",unique(conds)[as.numeric(compa[1,2])], ")", sep="")
    }
  }


  res.l <- list(
    logFC = as.data.frame(res[,1:Compa.Nb]),
    P_Value = as.data.frame(res[,-(1:Compa.Nb)] )
  )

  colnames(res.l$logFC) <- paste(cn, "logFC",sep="_")
  colnames(res.l$P_Value) <- paste(cn, "pval",sep="_")
  ## end colnames

  return(res.l)
}

Try the DAPAR package in your browser

Any scripts or data that you put into this service are public.

DAPAR documentation built on April 11, 2021, 6 p.m.