Nothing
#' @title Function to perform a One-way Anova statistical test on a MsnBase dataset
#'
#' @author Hélène Borges
#'
#' @param current_line The line currently treated from the quantitative data to
#' perform the ANOVA
#'
#' @param conditions The conditions represent the different classes of the
#' studied factor
#'
#' @return A named vector containing all the different values of the aov model
#'
#' @examples
#' utils::data(Exp1_R25_prot, package='DAPARdata')
#' obj <- Exp1_R25_prot[1:1000]
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=ncol(obj))
#' obj <- mvFilterFromIndices(obj, keepThat)
#' anova_tests <- t(apply(Biobase::exprs(obj),1, classic1wayAnova, conditions=as.factor(Biobase::pData(obj)$Condition)))
#'
#' @importFrom stats aov
#'
#' @export
#'
classic1wayAnova <- function(current_line, conditions){
# vector containing the protein/peptide intensities
intensities <- unname(unlist(current_line))
# anova sur ces deux vecteurs
aov_test <- aov(formula = intensities ~ conditions, data = NULL)
return(aov_test)
}
#' @title Wrapper for One-way Anova statistical test
#'
#' @author Hélène Borges
#'
#' @param obj An object of class \code{MSnSet}.
#'
#' @param with_post_hoc a character string with 2 possible values: "Yes" and
#' "No" (default) saying if function must perform a Post-Hoc test or not.
#'
#' @param post_hoc_test character string, possible values are "No" (for no
#' test; default value) or TukeyHSD" or "Dunnett". See details of
#' \code{postHocTest()} function to choose the appropriate one.
#'
#' @details This function allows to perform a 1-way Analysis of Variance. Also
#' computes the post-hoc tests if the \code{with_post_hoc} parameter is set to
#' yes. There are two possible post-hoc tests: the Tukey Honest Significant Differences
#' (specified as "TukeyHSD") and the Dunnett test (specified as "Dunnett").
#'
#' @return A list of two dataframes. First one called "logFC" contains
#' all pairwise comparisons logFC values (one column for one comparison) for
#' each analysed feature (Except in the case without post-hoc testing, for
#' which NAs are returned.); The second one named "P_Value" contains the
#' corresponding p-values.
#'
#' @examples
#' utils::data(Exp1_R25_prot, package='DAPARdata')
#' obj <- Exp1_R25_prot[1:1000]
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=ncol(obj))
#' obj <- mvFilterFromIndices(obj, keepThat)
#' anovatest <- wrapperClassic1wayAnova(obj)
#'
#' @seealso [postHocTest()]
#'
#' @export
#' @importFrom dplyr select
#'
wrapperClassic1wayAnova <- function(obj, with_post_hoc = "No", post_hoc_test = "No"){
qData <- Biobase::exprs(obj)
sTab <- Biobase::pData(obj)
if(with_post_hoc == "No"){
anova_tests <- as.data.frame(t(apply(qData,1,function(x) unlist(summary(classic1wayAnova(x,conditions=as.factor(sTab$Condition)))))))
results <- dplyr::select(anova_tests, `Pr(>F)1`)
to_return <- list("logFC" = data.frame("anova_1way_logFC" = matrix(NA, nrow = nrow(results)), row.names = rownames(results)),
"P_Value" = data.frame("anova_1way_pval" = results$`Pr(>F)1`, row.names = rownames(results)))
}else if(with_post_hoc == "Yes"){
if(post_hoc_test == "No"){
stop("You want to perform a post-hoc test but did not specify which test. Please choose between Dunnett or TukeyHSD")
}else if(post_hoc_test == "TukeyHSD"){
anova_tests <- t(apply(qData,1, classic1wayAnova, conditions=as.factor(sTab$Condition)))
names(anova_tests) <- rownames(qData)
to_return <- postHocTest(aov_fits = anova_tests, post_hoc_test = post_hoc_test)
}else if(post_hoc == "Dunnett"){
anova_tests <- t(apply(qData,1, classic1wayAnova, conditions=as.factor(sTab$Condition)))
names(anova_tests) <- rownames(qData)
to_return <- postHocTest(aov_fits = anova_tests, post_hoc_test = post_hoc_test)
}
}else{
stop("Wrong with_post_hoc parameter. Please choose between No or Yes.")
}
return(to_return)
}
#' Extract logFC and raw pvalues from multiple post-hoc models summaries
#'
#' @param post_hoc_models_summaries a list of summaries of post-hoc models.
#'
#' @return a list of 2 dataframes containing the logFC values and pvalues for
#' each comparison.
#'
#' @author Hélène Borges
#'
#' @examples
#' utils::data(Exp1_R25_prot, package='DAPARdata')
#' obj <- Exp1_R25_prot[1:1000]
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=ncol(obj))
#' obj <- mvFilterFromIndices(obj, keepThat)
#' anova_tests <- t(apply(Biobase::exprs(obj),1, classic1wayAnova, conditions=as.factor(Biobase::pData(obj)$Condition)))
#' names(anova_tests) <- rownames(Biobase::exprs(obj))
#' tms <- lapply(anova_tests,
#' function(x) summary(multcomp::glht(x, linfct = multcomp::mcp(conditions = "Tukey")),
#' test = multcomp::adjusted("none")))
#' res <- formatPHResults(tms)
#'
#' @export
#'
#' @importFrom purrr map_dfr
formatPHResults <- function(post_hoc_models_summaries){
# récupérer les différences entre les moyennes
res_coeffs <- lapply(post_hoc_models_summaries, function(x) x$test$coefficients)
logFC <- data.frame(purrr::map_dfr(res_coeffs, cbind),
row.names = names(post_hoc_models_summaries[[1]]$test$coefficients))
logFC <- as.data.frame(t(logFC))
# extract raw p-values (non-adjusted)
res_pvals <- lapply(post_hoc_models_summaries, function(x) x$test$pvalues)
pvals <- data.frame(purrr::map_dfr(res_pvals, cbind),
row.names = names(post_hoc_models_summaries[[1]]$test$coefficients))
pvals <- as.data.frame(t(pvals))
res <- list("logFC" = logFC,
"P_Value" = pvals)
# formatting of column names for consistency with the limma and t-test code
colnames(res$logFC) <- stringr::str_replace(colnames(res$logFC), " - ", "_vs_")
colnames(res$P_Value) <- stringr::str_replace(colnames(res$P_Value), " - ", "_vs_")
colnames(res$logFC) <- stringr::str_c(colnames(res$logFC), "_logFC")
colnames(res$P_Value) <- stringr::str_c(colnames(res$P_Value), "_pval")
return(res)
}
#' Post-hoc tests for classic 1-way ANOVA
#'
#' @description This function allows to compute a post-hoc test after a 1-way
#' ANOVA analysis. It expects as input an object obtained with the function
#' \code{classic1wayAnova}. The second parameter allows to choose between 2
#' different post-hoc tests: the Tukey Honest Significant Differences
#' (specified as "TukeyHSD") and the Dunnett test (specified as "Dunnett").
#'
#'
#' @param aov_fits a list containing aov fitted model objects
#'
#' @param post_hoc_test a character string indicating which post-hoc test to
#' use. Possible values are "TukeyHSD" or "Dunnett". See details for what to
#' choose according to your experimental design.
#'
#' @details
#' This is a function allowing to realise post-hoc tests for a set of
#' proteins/peptides for which a classic 1-way anova has been performed with
#' the function \code{classic1wayAnova}. Two types of tests are currently
#' available: The Tukey HSD's test and the Dunnett's test. Default is Tukey's
#' test.
#' The Tukey HSD's test compares all possible pairs of means, and is based on a
#' studentized range distribution. Here is used the \code{TukeyHSD()} function,
#' which can be applied to balanced designs (same number of samples in each
#' group), but also to midly unbalanced designs.
#' The Dunnett's test compares a single control group to all other groups.
#' Make sure the factor levels are properly ordered.
#'
#' @return a list of 2 dataframes: first one called "LogFC" contains
#' all pairwise comparisons logFC values (one column for one comparison) for
#' each analysed feature; The second one named "P_Value" contains the
#' corresponding pvalues.
#'
#' @author Hélène Borges
#'
#' @examples
#' utils::data(Exp1_R25_prot, package='DAPARdata')
#' obj <- Exp1_R25_prot[1:1000]
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=ncol(obj))
#' obj <- mvFilterFromIndices(obj, keepThat)
#' anova_tests <- t(apply(Biobase::exprs(obj),1, classic1wayAnova, conditions=as.factor(Biobase::pData(obj)$Condition)))
#' names(anova_tests) <- rownames(Biobase::exprs(obj))
#' pht <- postHocTest(aov_fits = anova_tests)
#'
#' @export
#'
#' @importFrom multcomp glht adjusted mcp
#'
postHocTest <- function(aov_fits, post_hoc_test = "TukeyHSD"){
if(post_hoc_test == "TukeyHSD"){
# use of adjusted("none") to obtain raw p-values (and not adjusted ones)
tukey_models_summaries <- lapply(aov_fits,
function(x) summary(multcomp::glht(x, linfct = multcomp::mcp(conditions = "Tukey")),
test = multcomp::adjusted("none")))
res <- formatPHResults(tukey_models_summaries)
}else if(post_hoc_test == "Dunnett"){
dunnett_models_summaries <- lapply(aov_fits,
function(x) summary(multcomp::glht(x, linfct = multcomp::mcp(conditions = "Dunnett")),
test = multcomp::adjusted("none"))
)
res <- formatPHResults(dunnett_models_summaries)
}else{
stop("Wrong post_hoc_test parameter. Please choose between TukeyHSD or
Dunnett.")
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.