Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(cache = 0, fig.width = 6,
fig.height = 7)
## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown()
## ----eval=FALSE---------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("DAMEfinder")
## -----------------------------------------------------------------------------
suppressPackageStartupMessages({
library(DAMEfinder)
library(SummarizedExperiment)
library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg19)
})
bam_files <- c(system.file("extdata", "NORM1_chr19_trim.bam",
package = "DAMEfinder"),
system.file("extdata", "CRC1_chr19_trim.bam",
package = "DAMEfinder"))
vcf_files <- c(system.file("extdata", "NORM1.chr19.trim.vcf",
package = "DAMEfinder"),
system.file("extdata", "CRC1.chr19.trim.vcf",
package = "DAMEfinder"))
sample_names <- c("NORM1", "CRC1")
#Use another reference file for demonstration, and fix the seqnames
genome <- BSgenome.Hsapiens.UCSC.hg19
seqnames(genome) <- gsub("chr","",seqnames(genome))
reference_file <- DNAStringSet(genome[[19]], use.names = TRUE)
names(reference_file) <- 19
#Extract reads and extract methylation according to allele
snp.list <- extract_bams(bam_files, vcf_files, sample_names, reference_file,
coverage = 2)
#CpG sites for first SNP in VCF file from sample NORM1
snp.list$NORM1[[1]]
#CpG sites for first SNP in VCF file from sample CRC1
snp.list$CRC1[[1]]
## -----------------------------------------------------------------------------
derASM <- calc_derivedasm(snp.list)
derASM
assays(derASM)
## -----------------------------------------------------------------------------
x <- assay(derASM, "der.ASM")
head(x)
## -----------------------------------------------------------------------------
data(extractbams_output)
#The data loaded is an output from `split_bams()`, therefore we run
#`calc_derivedasm` to get the SummarizedExperiment
derASM <- calc_derivedasm(extractbams_output, cores = 1, verbose = FALSE)
#We remove all CpG sites with any NA values, but not 0s
filt <- rowSums(!is.na(assay(derASM, "der.ASM"))) == 8
derASM <- derASM[filt,]
#set the design matrix
grp <- factor(c(rep("CRC",4),rep("NORM",4)), levels = c("NORM", "CRC"))
mod <- model.matrix(~grp)
mod
#Run default
dames <- find_dames(derASM, mod)
head(dames)
#Run empirical method
dames <- find_dames(derASM, mod, pvalAssign = "empirical")
head(dames)
## -----------------------------------------------------------------------------
tuple_files <- c(system.file("extdata", "NORM1_chr19.qs.CG.2.tsv.gz",
package = "DAMEfinder"),
system.file("extdata", "CRC1_chr19.qs.CG.2.tsv.gz",
package = "DAMEfinder"))
sample_names <- c("NORM1", "CRC1")
tuple_list <- read_tuples(tuple_files, sample_names)
head(tuple_list$NORM1)
## -----------------------------------------------------------------------------
ASM_mat <- calc_asm(tuple_list)
ASM_mat
## -----------------------------------------------------------------------------
#load package data
data(readtuples_output)
#run calc_asm and filter object
ASMscore <- calc_asm(readtuples_output)
filt <- rowSums(!is.na(assay(ASMscore, "asm"))) == 5 #filt to avoid warnings
ASMscore <- ASMscore[filt,]
#make design matrix (or specify a contrast)
grp <- factor(c(rep("CRC",3),rep("NORM",2)), levels = c("NORM", "CRC"))
mod <- model.matrix(~grp)
#run default and increase maxGap to get longer, more sparse regions
dames <- find_dames(ASMscore, mod, maxGap = 300)
head(dames)
#run alternative mode
dames <- find_dames(ASMscore, mod, maxGap = 300, pvalAssign = "empirical")
head(dames)
## ---- dametrack---------------------------------------------------------------
#Here I will use the tuple-ASM SummExp
colData(ASMscore)$group <- grp
colData(ASMscore)$samples <- colnames(ASMscore)
#Set a DAME as a GRanges. I choose a one from the tables we obtained above
dame <- GRanges(19,IRanges(323736,324622))
dame_track(dame = dame,
ASM = ASMscore)
## ---- dt2---------------------------------------------------------------------
dame_track(dame = dame,
ASM = ASMscore,
window = 2)
## ---- dt3---------------------------------------------------------------------
dame <- GRanges(19,IRanges(387966,387983))
grp <- factor(c(rep("CRC",4),rep("NORM",4)), levels = c("NORM", "CRC"))
colData(derASM)$group <- grp
dame_track(dame = dame,
derASM = derASM)
## ---- dt4---------------------------------------------------------------------
dame_track(dame = dame,
derASM = derASM,
plotSNP = TRUE)
## ---- dt5---------------------------------------------------------------------
dame_track(dame = dame,
derASM = derASM,
ASM = ASMscore)
## ---- dt6---------------------------------------------------------------------
dame_track_mean(dame = dame,
derASM = derASM,
ASM = ASMscore)
## ---- fig1--------------------------------------------------------------------
#put SNP in GRanges (you can find the SNP with the dame_track function)
snp <- GRanges(19, IRanges(267039, width = 1)) #always set the width if your
#GRanges has 1 site
snp
bam.file <- system.file("extdata", "CRC1_chr19_trim.bam",
package = "DAMEfinder")
vcf.file <- system.file("extdata", "CRC1.chr19.trim.vcf",
package = "DAMEfinder")
methyl_circle_plot(snp = snp, vcfFile = vcf.file, bamFile = bam.file,
refFile = reference_file)
## ---- fig2--------------------------------------------------------------------
cpgsite <- GRanges(19, IRanges(266998, width = 1))
methyl_circle_plot(snp = snp, vcfFile = vcf.file, bamFile = bam.file,
refFile = reference_file, cpgsite = cpgsite)
## ---- fig3--------------------------------------------------------------------
cpgsite <- GRanges(19, IRanges(266998, width = 1))
methyl_circle_plotCpG(cpgsite = cpgsite, bamFile = bam.file,
refFile = reference_file)
## ---- fig4--------------------------------------------------------------------
#a random region
dame <- GRanges(19, IRanges(266998,267100))
methyl_circle_plot(snp = snp, vcfFile = vcf.file, bamFile = bam.file,
refFile = reference_file, dame = dame)
## ---- fig5--------------------------------------------------------------------
grp <- factor(c(rep("CRC",3),rep("NORM",2)), levels = c("NORM", "CRC"))
methyl_MDS_plot(ASMscore, group = grp)
## -----------------------------------------------------------------------------
utils::sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.