Nothing
## ---- eval=FALSE--------------------------------------------------------------
# library(CoRegNet)
# data(CIT_BLCA_EXP,HumanTF,CIT_BLCA_Subgroup)
# dim(CIT_BLCA_EXP)
# #showing 6 first TF in the gene expression dataset
# head(intersect(rownames(CIT_BLCA_EXP),HumanTF))
## ---- eval=FALSE--------------------------------------------------------------
# grn = hLICORN(CIT_BLCA_EXP, TFlist=HumanTF)
## ---- eval=FALSE--------------------------------------------------------------
# influence = regulatorInfluence(grn,CIT_BLCA_EXP)
## ---- eval=FALSE--------------------------------------------------------------
# coregs= coregulators(grn)
## ---- eval=FALSE--------------------------------------------------------------
# display(grn,CIT_BLCA_EXP,influence,clinicalData=CIT_BLCA_Subgroup)
## ---- eval=FALSE--------------------------------------------------------------
# # An example of how to infer a co-regulation network
# grn =hLICORN(CIT_BLCA_EXP, TFlist=HumanTF)
# print(grn)
## ---- eval=FALSE--------------------------------------------------------------
# #Default discretization.
# #Uses the standard deviation of the whole dataset to set a threshold.
# disc1=discretizeExpressionData(CIT_BLCA_EXP)
# table(disc1)
# boxplot(as.matrix(CIT_BLCA_EXP)~disc1)
#
# #Discretization with a hard threshold
# disc2=discretizeExpressionData(CIT_BLCA_EXP, threshold=1)
# table(disc2)
# boxplot(as.matrix(CIT_BLCA_EXP)~disc2)
#
# # more examples here
# help(discretizeExpressionData)
## ---- eval=FALSE--------------------------------------------------------------
# # running only on the 200 first gene in the matrix for fast analysis
# # Choosing to divide in 4 threads whenever possible
# options("mc.cores"=4)
# grn =hLICORN(head(CIT_BLCA_EXP,200), TFlist=HumanTF)
# print(grn)
# options("mc.cores"=2)
# grn =hLICORN(head(CIT_BLCA_EXP,200), TFlist=HumanTF)
# print(grn)
## ---- eval=FALSE--------------------------------------------------------------
# # ChIP data from the CHEA database
# data(CHEA_sub)
#
# #ChIP data from the ENCODE project
# data(ENCODE_sub)
#
# # Protein protein interactions between TF from the HIPPIE database
# data(HIPPIE_sub)
#
# # Protein protein interactions between TF from the STRING database
# data(STRING_sub)
#
# enrichedGRN = addEvidences(grn,CHEA_sub,ENCODE_sub)
# enrichedGRN = addCooperativeEvidences(enrichedGRN,HIPPIE_sub,STRING_sub)
## ---- eval=FALSE--------------------------------------------------------------
# print(enrichedGRN)
## ---- eval=FALSE--------------------------------------------------------------
# # Default unsupervised refinement method
# refinedGRN = refine(enrichedGRN)
# print(refinedGRN)
# # Example of supervised refinement with the CHEA chip data
# refinedGRN = refine(enrichedGRN, integration="supervised",
# referenceEvidence="CHEA_sub")
# print(refinedGRN)
## ---- eval=FALSE--------------------------------------------------------------
# CITinf =regulatorInfluence(grn,CIT_BLCA_EXP)
#
## ---- eval=FALSE--------------------------------------------------------------
# # Coregulators of a hLICORN inferred network
# head(coregulators(grn))
## ---- eval=FALSE--------------------------------------------------------------
# data(CIT_BLCA_CNV)
# data(CIT_BLCA_Subgroup)
## ---- eval=FALSE--------------------------------------------------------------
# display(grn,expressionData=CIT_BLCA_EXP,TFA=CITinf)
## ---- eval=FALSE--------------------------------------------------------------
# # Visualizing additional regulatory or co-regulatory evidences in the network
# display(enrichedGRN,expressionData=CIT_BLCA_EXP,TFA=CITinf)
#
#
# # Visualizing sample classification using a named factor
# display(grn,expressionData=CIT_BLCA_EXP,TFA=CITinf,clinicalData=CIT_BLCA_Subgroup)
#
# # Visualizing copy number alteration of regulators
# data(CIT_BLCA_CNV)
# display(grn,expressionData=CIT_BLCA_EXP,TFA=CITinf,clinicalData=CIT_BLCA_Subgroup,alterationData=CIT_BLCA_CNV)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.