R/extract_merge.R

Defines functions mergeMS2spectra neutrallossPatterns mergeSpecList extractMS2spectra mergeTolerance

Documented in extractMS2spectra mergeMS2spectra mergeSpecList mergeTolerance neutrallossPatterns

#' Merge spectra with m/z tolerance
#'
#' \code{mergeTolerance()} merges two spectra by identifying common peaks with
#' a given m/z tolerance. It can be used with \code{Reduce()} to merge more
#' than two spectra.
#'
#' @param x,y MS2 spectra as objects of class \code{matrix} with m/z in the
#'   first column and intensity in the second.
#'
#' @param tolerance The m/z tolerance used for merging. If two peaks are within
#'   tolerance, they are regarded as the same. Defaults to \code{1e-5}, i.e.
#'   10ppm.
#'
#' @return A matrix with m/z in the first column and separate columns for
#'   intensities in the respective spectra. If peaks were merged, their m/z
#'   corresponds to the mean of the two original m/z.
#'
#' @keywords internal
mergeTolerance <- function(x, y, tolerance = 1e-5) {
    colnames(x) <-
        c("V1", 2:ncol(x)) #suppresses error warning 'duplicate column names'
    colnames(y) <-
        c("V1", 2:ncol(y)) #suppresses error warning 'duplicate column names'
    mrg <- merge(x, y, by = "V1", all = TRUE)
    mrg[is.na(mrg)] <- 0
    i <- 1
    while (!is.na(mrg[(i + 1), 1])) {
        if (abs(mrg[i, 1] - mrg[(i + 1), 1]) <= mrg[i, 1] * tolerance) {
            mrg[i, 1] <- (mrg[i, 1] + mrg[(i + 1), 1]) / 2
            mrg[i,-1] <- mrg[i,-1] + mrg[(i + 1),-1]
            mrg <- mrg[-(i + 1),]
            i <- i + 1
            colnames(mrg) <-
                c("V1", 2:ncol(mrg))
            ##suppresses error warning 'duplicate column names'
        } else {
            i <- i + 1
        }
    }
    mrg
}

#' Extract MS2 spectra from raw data files
#'
#' \code{extractMS2spectra()} is used to extract MS2 spectra from raw data
#' files, e.g. mzXML files.
#'
#' @param MSfile An LC-MS/MS raw data file in one of the non-proprietary
#'   formats that can be parsed by \code{mzR}, e.g. mzXML or mzML.
#'
#' @param min_peaks Minimum number of peaks in MS2 spectrum, defaults to
#'   \code{2}. Spectra with less than \code{min_peaks} fragment peaks will be
#'   ignored and not extracted.
#'
#' @param recalibrate_precursor Logical, defaults to \code{FALSE}. Applicable
#'   only for files that were exported to mzXML using a deprecated version of
#'   Bruker Compass Xport (< 3.0.13). If set to \code{TRUE}, the precursor m/z
#'   will be recalculated from the respective fragment m/z in the MS2 spectrum.
#'   For details, see Depke et al. 2017.
#'
#' @param RTlims Retention time interval for the extraction of spectra. Provide
#'   as numeric vector of length 2. Spectra with retention time <
#'   \code{RTlims[1]} or > \code{RTlims[2]} will be ignored.
#'
#' @return A \code{list} with objects of class \code{MS2spectrum}, containing
#'   MS2 spectra extracted from the raw data.
#'
#' @importFrom methods new
#'
#' @import mzR
#'
#' @examples
#' my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
#'                                 "PoolA_R_SE.mzXML",
#'                                 package = "CluMSIDdata"),
#'                                 min_peaks = 4, RTlims = c(0,10))
#'
#' @export
extractMS2spectra <- function(  MSfile, min_peaks = 2,
                                recalibrate_precursor = FALSE,
                                RTlims = NULL){
    aa <- mzR::openMSfile(MSfile, backend = "Ramp")

    mslvl <- c()
    for (z in seq_along(aa)) {
        mslvl[z] <- mzR::header(aa, z)$msLevel
    }
    try(if(length(mslvl[mslvl == 2]) < 1) stop("The file does not
                                                contain MS2 spectra."))

    spectra <- list()
    for (z in seq_along(aa)) {
        spectra[[z]] <- mzR::peaks(aa, z)
    }
    ms2log <- mslvl == 2
    ms2spectra <- spectra[ms2log]

    vec <- c()
    for (k in seq_along(ms2spectra)) {
        vec[k] <- (nrow(ms2spectra[[k]]) >= min_peaks)
    }
    ms2spectra2 <- ms2spectra[vec]

    pmz <- mzR::header(aa)$precursorMZ

    if(recalibrate_precursor) {
        rp <- function(n) {
            mzR::peaks(aa, (i - n))[which.min(
                abs(pmz[i] - mzR::peaks(aa, (i - n))[, 1])), 1]
        }
        new.pmz <- 0
        for (i in seq_along(pmz)[-1]) {
            if (pmz[i] == 0) x <- 0
            else if (pmz[(i - 1)] == 0) x <- rp(1)
            else if (pmz[(i - 2)] == 0) x <- rp(2)
            else if (pmz[(i - 3)] == 0) x <- rp(3)
            else x <- NA
            if (x == 0 || ((abs(x - pmz[i]) / pmz[i]) * 1e06) <= 200) {
                new.pmz[i] <- x
            } else new.pmz[i] <- NA
        }
    } else new.pmz <- pmz

    pol <- ifelse(mzR::header(aa)$polarity == 1, "positive",
                    ifelse(mzR::header(aa)$polarity == 0, "negative", ""))

    precursor <- data.frame(new.pmz, mzR::header(aa)$retentionTime, pol)
    precursor2 <- precursor[ms2log,][vec,]

    if(!is.null(RTlims)){
        cutrt <- precursor2[, 2] < (RTlims[2] * 60) &
            precursor2[, 2] > (RTlims[1] * 60)
        precursormzrt <- precursor2[cutrt,]
        ms2list <- ms2spectra2[cutrt]
    } else {
        precursormzrt <- precursor2
        ms2list <- ms2spectra2
    }

    output <- list()
    for(e in seq_along(ms2list)){
        output[[e]] <- methods::new("MS2spectrum",
                                    precursor = as.numeric(precursormzrt[e,1]),
                                    rt = as.numeric(precursormzrt[e,2]),
                                    polarity = as.character(precursormzrt[e,3]),
                                    spectrum = ms2list[[e]])
    }
    return(output)
    mzR::close(aa)
}

#' Merge list of spectra
#'
#' \code{mergeSpecList()} is an accessory function used only inside
#' \code{mergeMS2spectra}.
#'
#' @param speclist A \code{list} of \code{MS2spectrum} objects to be merged.
#'
#' @param tolerance The m/z tolerance to be used for merging.
#'
#' @return A \code{list} of the same length as \code{speclist} containing
#'   merged spectra as \code{MS2spectrum} objects. If multiple spectra
#'   contribute to one consensus spectrum, than this consensus spectrum is
#'   contained in the list multiple times at the respective positions of the
#'   contributing spectra.
#'
#' @importFrom methods new
#'
#' @keywords internal
mergeSpecList <- function(speclist, tolerance = 1e-5) {
    mergeToleranceX <- function(x,y){
        mergeTolerance(x,y,tolerance = tolerance)
    }#to circumvent the problem that Reduce() can't handle additional arguments
    mrgls <- list()
    ident <- c()
    for (s in seq_along(speclist)) {
        ident[s] <- speclist[[s]]@id
    }
    for (z in seq_along(speclist)) {
        z0 <- c()
        for (j in seq_len(z - 1)) {
            z0[j] <- ident[z] == ident[j]
        }
        if (z != 1 & any(z0)) {
            mrgls[[z]] <- mrgls[[which(z0)[1]]]
        } else {
            if (sum(ident == ident[z]) > 1) {
                zl <- speclist[ident == ident[z]]
                for(d in seq_along(zl)){
                    zl[[d]] <- zl[[d]]@spectrum
                }
                z1 <- as.matrix(Reduce(mergeToleranceX, zl))
                #Problem: cannot include "tolerance" arg in Reduce
                z1[is.na(z1)] <- 0
                z2 <-
                    cbind(z1[, 1],
                        round((rowSums(z1) - z1[, 1]) / ncol(z1[,-1])))
                dimnames(z2) <- NULL
                mrgls[[z]] <- methods::new( "MS2spectrum",
                                            id = ident[z],
                                            precursor =
                                                as.numeric(
                                                    speclist[[z]]@precursor),
                                            rt = as.numeric(speclist[[z]]@rt),
                                            polarity = as.character(
                                                    speclist[[z]]@polarity),
                                            spectrum = z2)
            } else {
                mrgls[[z]] <- speclist[[z]]
            }
        }
    }
    mrgls
}

#' Generate neutral loss patterns from MS2 spectra
#'
#' \code{neutrallossPatterns} generates neutral loss patterns from MS2 spectra
#' and adds them to \code{\linkS4class{MS2spectrum}} objects in the slot
#' \code{neutral_losses}.
#'
#' @param x an object of class \code{\linkS4class{MS2spectrum}} that contains
#'   an MS2 spectrum in the \code{spectrum} slot
#'
#' @return an object of class \code{\linkS4class{MS2spectrum}} with a neutral
#'   loss pattern in the \code{neutral_losses} slot
#'
#' @keywords internal
neutrallossPatterns <- function(x){
    temp.nl <- cbind((x@precursor - x@spectrum[, 1]),
                        x@spectrum[, 2])
    temp.nl <- subset(temp.nl, temp.nl[, 1] >= (x@precursor * 1e-5))
    #include unfragmented precursor??
    x@neutral_losses <- temp.nl
    return(x)
}

#' Merge MS2 spectra with or without external peak table
#'
#' \code{mergeMS2spectra} is used to merge MS2 spectra that come from the same
#' precursor. It does so either by grouping spectra of the same precursor
#' \emph{m/z} that fall into a defined retention time window
#' (\code{rt_tolerance}) or by grouping spectra to peaks from an externally
#' supplied peak table. Please see the vignette for more details.
#'
#' @param ms2list A \code{list} of \code{MS2spectrum} objects to be merged.
#'
#' @param mz_tolerance The \emph{m/z} tolerance to be used for merging, default
#'   is \code{1e-5}, i.e. +/- 10ppm. If the mass-to-charge ratios of two peaks
#'   differ less than \emph{mz_tolerance}, they are assumed to have the same
#'   \emph{m/z}
#'
#' @param rt_tolerance The retention time tolerance used for merging features.
#'   If used without a peak table, \code{rt_tolerance} is the maximum retention
#'   time difference between to subsequent spectra of the same precursor
#'   \emph{m/z} with which they are still assumed to belong to the same feature
#'   If used with an external peak table, \code{rt_tolerance} is the maximum
#'   retention time difference between a spectrum and a peak in the peak table
#'   with which the spectrum is still considered to belong to that peak.
#'
#' @param peaktable An external peak table, e.g. from XCMS, that serves as a
#'   template for grouping spectra. The peaktable must be a three-column
#'   \code{data.frame} with feature ID, \emph{m/z} and retention time for each
#'   peak/feature.
#'
#' @param exclude_unmatched If an external peak table is used: Should spectra
#'   that do not match to any peak/feature in the peak table be exclude from
#'   the resulting list?
#'
#' @return A merged list of \code{\linkS4class{MS2spectrum}} objects.
#'
#' @importFrom stats median
#'
#' @examples
#' my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
#'                                 "PoolA_R_SE.mzXML",
#'                                 package = "CluMSIDdata"),
#'                                 min_peaks = 4, RTlims = c(0,5))
#'
#' my_merged_spectra <- mergeMS2spectra(my_spectra, rt_tolerance = 20)
#'
#' @export
mergeMS2spectra <- function(ms2list,
                            mz_tolerance = 1e-5,
                            rt_tolerance = 30,
                            peaktable = NULL,
                            exclude_unmatched = FALSE){
    flist <- list()
    mz <- c()
    for(k in seq_along(ms2list)){
        mz[k] <- ms2list[[k]]@precursor
    }
    rt <- c()
    for(k in seq_along(ms2list)){
        rt[k] <- ms2list[[k]]@rt
    }

    mz1 <- cbind(mz, rt)
    if(any(is.na(mz1))){
        stop("NAs in either mz or rt slot in at least one object!")
    }

    #if no sample table is provided, the original
    #algorithm is used to summarise spectra/features
    if(is.null(peaktable)){
        while (nrow(mz1) >= 1) {
            l1 <- abs(mz1[1, 1] - mz1[, 1]) <= mz1[1, 1] * mz_tolerance
            l2 <- matrix(mz1[c(l1, l1)], ncol = 2)
            l3 <- diff(l2[, 2])
            l4 <- c(0, which(l3 > rt_tolerance), nrow(l2))
            l5 <- list()
            for (i in seq_len(length(l4) - 1)) {
                l5[[i]] <- l2[(l4[i] + 1):(l4[i + 1]),]
            }
            flist <- append(flist, l5)
            mz1 <- matrix(mz1[c(!l1, !l1)], ncol = 2)
        }


        for (i in seq_along(flist)) {
            if (is.matrix(flist[[i]])) {
                flist[[i]] <- cbind(flist[[i]],
                                    rep(stats::median(flist[[i]][, 1]),
                                        times = nrow(flist[[i]])),
                                    rep(stats::median(flist[[i]][, 2]),
                                        times = nrow(flist[[i]])))
            } else {
                flist[[i]] <- c(flist[[i]], flist[[i]])
            }
        }
        medmzrt <- c()
        for (i in seq_along(flist)) {
            medmzrt <- rbind(medmzrt, flist[[i]])
        }
        medmzrt <-
            as.data.frame(medmzrt)
        colnames(medmzrt) <- c("mz", "rt", "med.mz", "med.rt")

        medmzrt$id <- paste("M", round((medmzrt$med.mz), 2),
                            "T", round((medmzrt$med.rt), 2), sep = "")

        medmzrt <- medmzrt[order(medmzrt$rt),]

        for (g in seq_along(ms2list)){
            temp <- which((ms2list[[g]]@precursor == medmzrt$mz)
                            & (ms2list[[g]]@rt == medmzrt$rt))
            ms2list[[g]]@id <- medmzrt$id[temp]
            ms2list[[g]]@precursor <- round(medmzrt$med.mz[temp], 4)
            ms2list[[g]]@rt <- round(medmzrt$med.rt[temp], 2)
        }


    } else { #when a peak table is used ...

        ##problems arise when the ID column is factor,
        ##so it will be converted to character first

        if(is.factor(peaktable[,1])){
            peaktable[,1] <- as.character(peaktable[,1])
        }

        matr <- matrix(data = NA, ncol = 3, nrow = nrow(mz1))
        for(e in seq_len(nrow(mz1))){
            l1 <- as.vector(abs(mz1[e, 1] - peaktable[,2]) <= mz1[e, 1] * mz_tolerance &
                abs(mz1[e, 2] - peaktable[, 3]) <= rt_tolerance)
            if(sum(l1) == 0){
                matr[e,] <- c(paste0("no_match_", e), mz1[e, 1], mz1[e, 2])
            } else if(sum(l1) == 1){
                matr[e,] <- unlist(peaktable[l1,])
            } else if(sum(l1) > 1){
                matr[e,] <- unlist(peaktable[l1,][which.min(
                    unlist(abs(peaktable[l1,3] - mz1[e, 2]))),])
            }
        }

        mz2 <- matr[grepl(pattern = "no_match_", x = matr[,1]),2:3]
        mz2 <- matrix(data = vapply(mz2, as.numeric, double(1)), ncol = 2)

        while (nrow(mz2) >= 1) {
            l1 <- abs(mz2[1, 1] - mz2[, 1]) <= mz2[1, 1] * mz_tolerance
            l2 <- matrix(mz2[c(l1, l1)], ncol = 2)
            l3 <- diff(l2[, 2])
            l4 <- c(0, which(l3 > 30), nrow(l2))
            l5 <- list()
            for (i in seq_len(length(l4) - 1)) {
                l5[[i]] <- l2[(l4[i] + 1):(l4[i + 1]),]
            }
            flist <- append(flist, l5)
            mz2 <- matrix(mz2[c(!l1, !l1)], ncol = 2)
        }

        for (i in seq_along(flist)) {
            if (is.matrix(flist[[i]])) {
                flist[[i]] <- cbind(flist[[i]],
                                    rep(stats::median(flist[[i]][, 1]),
                                        times = nrow(flist[[i]])),
                                    rep(stats::median(flist[[i]][, 2]),
                                        times = nrow(flist[[i]])))
            } else {
                flist[[i]] <- c(flist[[i]], flist[[i]])
            }
        }
        medmzrt <- c()
        for (i in seq_along(flist)) {
            medmzrt <- rbind(medmzrt, flist[[i]])
        }
        medmzrt <-
            as.data.frame(medmzrt)
        colnames(medmzrt) <- c("mz", "rt", "med.mz", "med.rt")

        medmzrt$id <- paste("xM", round((medmzrt$med.mz), 2),
                            "T", round((medmzrt$med.rt), 2), sep = "")

        matr2 <- as.matrix(medmzrt)[,c(5,3,4)]

        matr[grepl(pattern = "no_match_", x = matr[,1]),] <- matr2

        for (g in seq_along(ms2list)){
            ms2list[[g]]@id <- matr[g,1]
            ms2list[[g]]@precursor <- round(as.numeric(matr[g,2]), 4)
            ms2list[[g]]@rt <- round(as.numeric(matr[g,3]), 2)
        }
    }

    mergedlist <- mergeSpecList(ms2list, tolerance = mz_tolerance)
    shortlist <- mergedlist[!duplicated(mergedlist)]

    for(u in seq_along(shortlist)){
        shortlist[[u]] <- neutrallossPatterns(shortlist[[u]])
    }

    if(exclude_unmatched){
        w <- 1
        while(w <= length(shortlist)){
            if(grepl(pattern = "xM", x = shortlist[[w]]@id)){
                shortlist[w] <- NULL
            } else w <- w+1
        }
    }

    return(shortlist)
}

Try the CluMSID package in your browser

Any scripts or data that you put into this service are public.

CluMSID documentation built on Nov. 8, 2020, 7:46 p.m.