Nothing
#' Merge spectra with m/z tolerance
#'
#' \code{mergeTolerance()} merges two spectra by identifying common peaks with
#' a given m/z tolerance. It can be used with \code{Reduce()} to merge more
#' than two spectra.
#'
#' @param x,y MS2 spectra as objects of class \code{matrix} with m/z in the
#' first column and intensity in the second.
#'
#' @param tolerance The m/z tolerance used for merging. If two peaks are within
#' tolerance, they are regarded as the same. Defaults to \code{1e-5}, i.e.
#' 10ppm.
#'
#' @return A matrix with m/z in the first column and separate columns for
#' intensities in the respective spectra. If peaks were merged, their m/z
#' corresponds to the mean of the two original m/z.
#'
#' @keywords internal
mergeTolerance <- function(x, y, tolerance = 1e-5) {
colnames(x) <-
c("V1", 2:ncol(x)) #suppresses error warning 'duplicate column names'
colnames(y) <-
c("V1", 2:ncol(y)) #suppresses error warning 'duplicate column names'
mrg <- merge(x, y, by = "V1", all = TRUE)
mrg[is.na(mrg)] <- 0
i <- 1
while (!is.na(mrg[(i + 1), 1])) {
if (abs(mrg[i, 1] - mrg[(i + 1), 1]) <= mrg[i, 1] * tolerance) {
mrg[i, 1] <- (mrg[i, 1] + mrg[(i + 1), 1]) / 2
mrg[i,-1] <- mrg[i,-1] + mrg[(i + 1),-1]
mrg <- mrg[-(i + 1),]
i <- i + 1
colnames(mrg) <-
c("V1", 2:ncol(mrg))
##suppresses error warning 'duplicate column names'
} else {
i <- i + 1
}
}
mrg
}
#' Extract MS2 spectra from raw data files
#'
#' \code{extractMS2spectra()} is used to extract MS2 spectra from raw data
#' files, e.g. mzXML files.
#'
#' @param MSfile An LC-MS/MS raw data file in one of the non-proprietary
#' formats that can be parsed by \code{mzR}, e.g. mzXML or mzML.
#'
#' @param min_peaks Minimum number of peaks in MS2 spectrum, defaults to
#' \code{2}. Spectra with less than \code{min_peaks} fragment peaks will be
#' ignored and not extracted.
#'
#' @param recalibrate_precursor Logical, defaults to \code{FALSE}. Applicable
#' only for files that were exported to mzXML using a deprecated version of
#' Bruker Compass Xport (< 3.0.13). If set to \code{TRUE}, the precursor m/z
#' will be recalculated from the respective fragment m/z in the MS2 spectrum.
#' For details, see Depke et al. 2017.
#'
#' @param RTlims Retention time interval for the extraction of spectra. Provide
#' as numeric vector of length 2. Spectra with retention time <
#' \code{RTlims[1]} or > \code{RTlims[2]} will be ignored.
#'
#' @return A \code{list} with objects of class \code{MS2spectrum}, containing
#' MS2 spectra extracted from the raw data.
#'
#' @importFrom methods new
#'
#' @import mzR
#'
#' @examples
#' my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
#' "PoolA_R_SE.mzXML",
#' package = "CluMSIDdata"),
#' min_peaks = 4, RTlims = c(0,10))
#'
#' @export
extractMS2spectra <- function( MSfile, min_peaks = 2,
recalibrate_precursor = FALSE,
RTlims = NULL){
aa <- mzR::openMSfile(MSfile, backend = "Ramp")
mslvl <- c()
for (z in seq_along(aa)) {
mslvl[z] <- mzR::header(aa, z)$msLevel
}
try(if(length(mslvl[mslvl == 2]) < 1) stop("The file does not
contain MS2 spectra."))
spectra <- list()
for (z in seq_along(aa)) {
spectra[[z]] <- mzR::peaks(aa, z)
}
ms2log <- mslvl == 2
ms2spectra <- spectra[ms2log]
vec <- c()
for (k in seq_along(ms2spectra)) {
vec[k] <- (nrow(ms2spectra[[k]]) >= min_peaks)
}
ms2spectra2 <- ms2spectra[vec]
pmz <- mzR::header(aa)$precursorMZ
if(recalibrate_precursor) {
rp <- function(n) {
mzR::peaks(aa, (i - n))[which.min(
abs(pmz[i] - mzR::peaks(aa, (i - n))[, 1])), 1]
}
new.pmz <- 0
for (i in seq_along(pmz)[-1]) {
if (pmz[i] == 0) x <- 0
else if (pmz[(i - 1)] == 0) x <- rp(1)
else if (pmz[(i - 2)] == 0) x <- rp(2)
else if (pmz[(i - 3)] == 0) x <- rp(3)
else x <- NA
if (x == 0 || ((abs(x - pmz[i]) / pmz[i]) * 1e06) <= 200) {
new.pmz[i] <- x
} else new.pmz[i] <- NA
}
} else new.pmz <- pmz
pol <- ifelse(mzR::header(aa)$polarity == 1, "positive",
ifelse(mzR::header(aa)$polarity == 0, "negative", ""))
precursor <- data.frame(new.pmz, mzR::header(aa)$retentionTime, pol)
precursor2 <- precursor[ms2log,][vec,]
if(!is.null(RTlims)){
cutrt <- precursor2[, 2] < (RTlims[2] * 60) &
precursor2[, 2] > (RTlims[1] * 60)
precursormzrt <- precursor2[cutrt,]
ms2list <- ms2spectra2[cutrt]
} else {
precursormzrt <- precursor2
ms2list <- ms2spectra2
}
output <- list()
for(e in seq_along(ms2list)){
output[[e]] <- methods::new("MS2spectrum",
precursor = as.numeric(precursormzrt[e,1]),
rt = as.numeric(precursormzrt[e,2]),
polarity = as.character(precursormzrt[e,3]),
spectrum = ms2list[[e]])
}
return(output)
mzR::close(aa)
}
#' Merge list of spectra
#'
#' \code{mergeSpecList()} is an accessory function used only inside
#' \code{mergeMS2spectra}.
#'
#' @param speclist A \code{list} of \code{MS2spectrum} objects to be merged.
#'
#' @param tolerance The m/z tolerance to be used for merging.
#'
#' @return A \code{list} of the same length as \code{speclist} containing
#' merged spectra as \code{MS2spectrum} objects. If multiple spectra
#' contribute to one consensus spectrum, than this consensus spectrum is
#' contained in the list multiple times at the respective positions of the
#' contributing spectra.
#'
#' @importFrom methods new
#'
#' @keywords internal
mergeSpecList <- function(speclist, tolerance = 1e-5) {
mergeToleranceX <- function(x,y){
mergeTolerance(x,y,tolerance = tolerance)
}#to circumvent the problem that Reduce() can't handle additional arguments
mrgls <- list()
ident <- c()
for (s in seq_along(speclist)) {
ident[s] <- speclist[[s]]@id
}
for (z in seq_along(speclist)) {
z0 <- c()
for (j in seq_len(z - 1)) {
z0[j] <- ident[z] == ident[j]
}
if (z != 1 & any(z0)) {
mrgls[[z]] <- mrgls[[which(z0)[1]]]
} else {
if (sum(ident == ident[z]) > 1) {
zl <- speclist[ident == ident[z]]
for(d in seq_along(zl)){
zl[[d]] <- zl[[d]]@spectrum
}
z1 <- as.matrix(Reduce(mergeToleranceX, zl))
#Problem: cannot include "tolerance" arg in Reduce
z1[is.na(z1)] <- 0
z2 <-
cbind(z1[, 1],
round((rowSums(z1) - z1[, 1]) / ncol(z1[,-1])))
dimnames(z2) <- NULL
mrgls[[z]] <- methods::new( "MS2spectrum",
id = ident[z],
precursor =
as.numeric(
speclist[[z]]@precursor),
rt = as.numeric(speclist[[z]]@rt),
polarity = as.character(
speclist[[z]]@polarity),
spectrum = z2)
} else {
mrgls[[z]] <- speclist[[z]]
}
}
}
mrgls
}
#' Generate neutral loss patterns from MS2 spectra
#'
#' \code{neutrallossPatterns} generates neutral loss patterns from MS2 spectra
#' and adds them to \code{\linkS4class{MS2spectrum}} objects in the slot
#' \code{neutral_losses}.
#'
#' @param x an object of class \code{\linkS4class{MS2spectrum}} that contains
#' an MS2 spectrum in the \code{spectrum} slot
#'
#' @return an object of class \code{\linkS4class{MS2spectrum}} with a neutral
#' loss pattern in the \code{neutral_losses} slot
#'
#' @keywords internal
neutrallossPatterns <- function(x){
temp.nl <- cbind((x@precursor - x@spectrum[, 1]),
x@spectrum[, 2])
temp.nl <- subset(temp.nl, temp.nl[, 1] >= (x@precursor * 1e-5))
#include unfragmented precursor??
x@neutral_losses <- temp.nl
return(x)
}
#' Merge MS2 spectra with or without external peak table
#'
#' \code{mergeMS2spectra} is used to merge MS2 spectra that come from the same
#' precursor. It does so either by grouping spectra of the same precursor
#' \emph{m/z} that fall into a defined retention time window
#' (\code{rt_tolerance}) or by grouping spectra to peaks from an externally
#' supplied peak table. Please see the vignette for more details.
#'
#' @param ms2list A \code{list} of \code{MS2spectrum} objects to be merged.
#'
#' @param mz_tolerance The \emph{m/z} tolerance to be used for merging, default
#' is \code{1e-5}, i.e. +/- 10ppm. If the mass-to-charge ratios of two peaks
#' differ less than \emph{mz_tolerance}, they are assumed to have the same
#' \emph{m/z}
#'
#' @param rt_tolerance The retention time tolerance used for merging features.
#' If used without a peak table, \code{rt_tolerance} is the maximum retention
#' time difference between to subsequent spectra of the same precursor
#' \emph{m/z} with which they are still assumed to belong to the same feature
#' If used with an external peak table, \code{rt_tolerance} is the maximum
#' retention time difference between a spectrum and a peak in the peak table
#' with which the spectrum is still considered to belong to that peak.
#'
#' @param peaktable An external peak table, e.g. from XCMS, that serves as a
#' template for grouping spectra. The peaktable must be a three-column
#' \code{data.frame} with feature ID, \emph{m/z} and retention time for each
#' peak/feature.
#'
#' @param exclude_unmatched If an external peak table is used: Should spectra
#' that do not match to any peak/feature in the peak table be exclude from
#' the resulting list?
#'
#' @return A merged list of \code{\linkS4class{MS2spectrum}} objects.
#'
#' @importFrom stats median
#'
#' @examples
#' my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
#' "PoolA_R_SE.mzXML",
#' package = "CluMSIDdata"),
#' min_peaks = 4, RTlims = c(0,5))
#'
#' my_merged_spectra <- mergeMS2spectra(my_spectra, rt_tolerance = 20)
#'
#' @export
mergeMS2spectra <- function(ms2list,
mz_tolerance = 1e-5,
rt_tolerance = 30,
peaktable = NULL,
exclude_unmatched = FALSE){
flist <- list()
mz <- c()
for(k in seq_along(ms2list)){
mz[k] <- ms2list[[k]]@precursor
}
rt <- c()
for(k in seq_along(ms2list)){
rt[k] <- ms2list[[k]]@rt
}
mz1 <- cbind(mz, rt)
if(any(is.na(mz1))){
stop("NAs in either mz or rt slot in at least one object!")
}
#if no sample table is provided, the original
#algorithm is used to summarise spectra/features
if(is.null(peaktable)){
while (nrow(mz1) >= 1) {
l1 <- abs(mz1[1, 1] - mz1[, 1]) <= mz1[1, 1] * mz_tolerance
l2 <- matrix(mz1[c(l1, l1)], ncol = 2)
l3 <- diff(l2[, 2])
l4 <- c(0, which(l3 > rt_tolerance), nrow(l2))
l5 <- list()
for (i in seq_len(length(l4) - 1)) {
l5[[i]] <- l2[(l4[i] + 1):(l4[i + 1]),]
}
flist <- append(flist, l5)
mz1 <- matrix(mz1[c(!l1, !l1)], ncol = 2)
}
for (i in seq_along(flist)) {
if (is.matrix(flist[[i]])) {
flist[[i]] <- cbind(flist[[i]],
rep(stats::median(flist[[i]][, 1]),
times = nrow(flist[[i]])),
rep(stats::median(flist[[i]][, 2]),
times = nrow(flist[[i]])))
} else {
flist[[i]] <- c(flist[[i]], flist[[i]])
}
}
medmzrt <- c()
for (i in seq_along(flist)) {
medmzrt <- rbind(medmzrt, flist[[i]])
}
medmzrt <-
as.data.frame(medmzrt)
colnames(medmzrt) <- c("mz", "rt", "med.mz", "med.rt")
medmzrt$id <- paste("M", round((medmzrt$med.mz), 2),
"T", round((medmzrt$med.rt), 2), sep = "")
medmzrt <- medmzrt[order(medmzrt$rt),]
for (g in seq_along(ms2list)){
temp <- which((ms2list[[g]]@precursor == medmzrt$mz)
& (ms2list[[g]]@rt == medmzrt$rt))
ms2list[[g]]@id <- medmzrt$id[temp]
ms2list[[g]]@precursor <- round(medmzrt$med.mz[temp], 4)
ms2list[[g]]@rt <- round(medmzrt$med.rt[temp], 2)
}
} else { #when a peak table is used ...
##problems arise when the ID column is factor,
##so it will be converted to character first
if(is.factor(peaktable[,1])){
peaktable[,1] <- as.character(peaktable[,1])
}
matr <- matrix(data = NA, ncol = 3, nrow = nrow(mz1))
for(e in seq_len(nrow(mz1))){
l1 <- as.vector(abs(mz1[e, 1] - peaktable[,2]) <= mz1[e, 1] * mz_tolerance &
abs(mz1[e, 2] - peaktable[, 3]) <= rt_tolerance)
if(sum(l1) == 0){
matr[e,] <- c(paste0("no_match_", e), mz1[e, 1], mz1[e, 2])
} else if(sum(l1) == 1){
matr[e,] <- unlist(peaktable[l1,])
} else if(sum(l1) > 1){
matr[e,] <- unlist(peaktable[l1,][which.min(
unlist(abs(peaktable[l1,3] - mz1[e, 2]))),])
}
}
mz2 <- matr[grepl(pattern = "no_match_", x = matr[,1]),2:3]
mz2 <- matrix(data = vapply(mz2, as.numeric, double(1)), ncol = 2)
while (nrow(mz2) >= 1) {
l1 <- abs(mz2[1, 1] - mz2[, 1]) <= mz2[1, 1] * mz_tolerance
l2 <- matrix(mz2[c(l1, l1)], ncol = 2)
l3 <- diff(l2[, 2])
l4 <- c(0, which(l3 > 30), nrow(l2))
l5 <- list()
for (i in seq_len(length(l4) - 1)) {
l5[[i]] <- l2[(l4[i] + 1):(l4[i + 1]),]
}
flist <- append(flist, l5)
mz2 <- matrix(mz2[c(!l1, !l1)], ncol = 2)
}
for (i in seq_along(flist)) {
if (is.matrix(flist[[i]])) {
flist[[i]] <- cbind(flist[[i]],
rep(stats::median(flist[[i]][, 1]),
times = nrow(flist[[i]])),
rep(stats::median(flist[[i]][, 2]),
times = nrow(flist[[i]])))
} else {
flist[[i]] <- c(flist[[i]], flist[[i]])
}
}
medmzrt <- c()
for (i in seq_along(flist)) {
medmzrt <- rbind(medmzrt, flist[[i]])
}
medmzrt <-
as.data.frame(medmzrt)
colnames(medmzrt) <- c("mz", "rt", "med.mz", "med.rt")
medmzrt$id <- paste("xM", round((medmzrt$med.mz), 2),
"T", round((medmzrt$med.rt), 2), sep = "")
matr2 <- as.matrix(medmzrt)[,c(5,3,4)]
matr[grepl(pattern = "no_match_", x = matr[,1]),] <- matr2
for (g in seq_along(ms2list)){
ms2list[[g]]@id <- matr[g,1]
ms2list[[g]]@precursor <- round(as.numeric(matr[g,2]), 4)
ms2list[[g]]@rt <- round(as.numeric(matr[g,3]), 2)
}
}
mergedlist <- mergeSpecList(ms2list, tolerance = mz_tolerance)
shortlist <- mergedlist[!duplicated(mergedlist)]
for(u in seq_along(shortlist)){
shortlist[[u]] <- neutrallossPatterns(shortlist[[u]])
}
if(exclude_unmatched){
w <- 1
while(w <= length(shortlist)){
if(grepl(pattern = "xM", x = shortlist[[w]]@id)){
shortlist[w] <- NULL
} else w <- w+1
}
}
return(shortlist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.