Nothing
## ---- echo = FALSE, results = "asis"--------------------------------------------------------------------------------------------
options(width = 130)
## ---- eval = FALSE--------------------------------------------------------------------------------------------------------------
# setGeneric("kNNinterface", function(measurements, ...) {standardGeneric("kNNinterface")})
#
# setMethod("kNNinterface", "DataFrame", function(measurements, classes, test, ..., verbose = 3)
# {
# splitDataset <- .splitDataAndClasses(measurements, classes)
# trainingMatrix <- as.matrix(splitDataset[["measurements"]])
# isNumeric <- sapply(measurements, is.numeric)
# measurements <- measurements[, isNumeric, drop = FALSE]
# isNumeric <- sapply(test, is.numeric)
# test <- test[, isNumeric, drop = FALSE]
#
# if(!requireNamespace("class", quietly = TRUE))
# stop("The package 'class' could not be found. Please install it.")
# if(verbose == 3)
# message("Fitting k Nearest Neighbours classifier to data and predicting classes.")
#
# class::knn(as.matrix(measurements), as.matrix(test), classes, ...)
# })
## ---- eval = FALSE--------------------------------------------------------------------------------------------------------------
# setMethod("kNNinterface", "matrix",
# function(measurements, classes, test, ...)
# {
# kNNinterface(DataFrame(t(measurements), check.names = FALSE),
# classes,
# DataFrame(t(test), check.names = FALSE), ...)
# })
#
# setMethod("kNNinterface", "MultiAssayExperiment",
# function(measurements, test, targets = names(measurements), ...)
# {
# tablesAndClasses <- .MAEtoWideTable(measurements, targets)
# trainingTable <- tablesAndClasses[["dataTable"]]
# classes <- tablesAndClasses[["classes"]]
# testingTable <- .MAEtoWideTable(test, targets)
#
# .checkVariablesAndSame(trainingTable, testingTable)
# kNNinterface(trainingTable, classes, testingTable, ...)
# })
## ---- message = FALSE-----------------------------------------------------------------------------------------------------------
classes <- factor(rep(c("Healthy", "Disease"), each = 5), levels = c("Healthy", "Disease"))
measurements <- matrix(c(rnorm(50, 10), rnorm(50, 5)), ncol = 10)
colnames(measurements) <- paste("Sample", 1:10)
rownames(measurements) <- paste("mRNA", 1:10)
library(ClassifyR)
trainParams <- TrainParams(kNNinterface)
predictParams <- PredictParams(NULL)
classified <- runTests(measurements, classes, datasetName = "Example",
classificationName = "kNN", validation = "leaveOut", leave = 1,
params = list(trainParams, predictParams))
classified
cbind(predictions(classified)[[1]], known = actualClasses(classified))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.