Nothing
## ---- echo = FALSE, results = "asis"--------------------------------------------------------------------------------------------
options(width = 130)
## ---- echo = FALSE--------------------------------------------------------------------------------------------------------------
htmltools::img(src = knitr::image_uri("ClassifyRprocedure.png"),
style = 'margin-left: auto;margin-right: auto')
## ---- echo = FALSE--------------------------------------------------------------------------------------------------------------
htmltools::img(src = knitr::image_uri("providedSelection.png"),
style = 'margin-left: auto;margin-right: auto')
## ---- echo = FALSE--------------------------------------------------------------------------------------------------------------
htmltools::img(src = knitr::image_uri("providedClassifiers.png"),
style = 'margin-left: auto;margin-right: auto')
## ---- echo = FALSE--------------------------------------------------------------------------------------------------------------
htmltools::img(src = knitr::image_uri("networkFunctions.png"),
style = 'margin-left: auto;margin-right: auto')
## ---- message = FALSE-----------------------------------------------------------------------------------------------------------
library(ClassifyR)
data(asthma)
measurements[1:5, 1:5]
head(classes)
## ---- tidy = FALSE--------------------------------------------------------------------------------------------------------------
DMresults <- runTests(measurements, classes, datasetName = "Asthma",
classificationName = "Different Means", permutations = 20, folds = 5,
seed = 2018, verbose = 1)
DMresults
## ---- fig.height = 8, fig.width = 8, results = "hold", message = FALSE----------------------------------------------------------
selectionPercentages <- distribution(DMresults, plot = FALSE)
sortedPercentages <- sort(selectionPercentages, decreasing = TRUE)
head(sortedPercentages)
mostChosen <- names(sortedPercentages)[1]
bestGenePlot <- plotFeatureClasses(measurements, classes, mostChosen, dotBinWidth = 0.1,
xAxisLabel = "Normalised Expression")
## -------------------------------------------------------------------------------------------------------------------------------
DMresults <- calcCVperformance(DMresults, "balanced error")
DMresults
performance(DMresults)
## ---- tidy = FALSE--------------------------------------------------------------------------------------------------------------
selectParams <- SelectParams(KullbackLeiblerSelection, resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(naiveBayesKernel)
predictParams <- PredictParams(predictor = NULL, weighted = "weighted",
weight = "height difference", returnType = "both")
paramsList <- list(selectParams, trainParams, predictParams)
DDresults <- runTests(measurements, classes, datasetName = "Asthma",
classificationName = "Differential Distribution",
permutations = 20, folds = 5, seed = 2018,
params = paramsList, verbose = 1)
DDresults
## ---- fig.width = 10, fig.height = 7--------------------------------------------------------------------------------------------
library(grid)
DMresults <- calcCVperformance(DMresults, "sample error")
DDresults <- calcCVperformance(DDresults, "sample error")
resultsList <- list(Abundance = DMresults, Distribution = DDresults)
errorPlot <- samplesMetricMap(resultsList, metric = "error", xAxisLabel = "Sample",
showXtickLabels = FALSE, plot = FALSE)
grid.draw(errorPlot)
## -------------------------------------------------------------------------------------------------------------------------------
rankOverlaps <- rankingPlot(list(DDresults), topRanked = 1:100,
xLabelPositions = c(1, seq(10, 100, 10)),
lineColourVariable = "None", pointTypeVariable = "None",
columnVariable = "None", plot = FALSE)
rankOverlaps
## ---- fig.height = 5, fig.width = 6---------------------------------------------------------------------------------------------
ROCcurves <- ROCplot(list(DDresults), fontSizes = c(24, 12, 12, 12, 12))
## -------------------------------------------------------------------------------------------------------------------------------
selectParams <- SelectParams(differentMeansSelection, resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(SVMtrainInterface, kernel = "linear",
tuneParams = list(cost = c(0.01, 0.1, 1, 10)),
tuneOptimise = c(metric = "balanced error", better = "lower"))
predictParams <- PredictParams(SVMpredictInterface)
SVMresults <- runTests(measurements, classes, datasetName = "Asthma",
classificationName = "Tuned SVM", permutations = 20, folds = 5, seed = 2018,
params = list(selectParams, trainParams, predictParams)
)
## -------------------------------------------------------------------------------------------------------------------------------
length(tunedParameters(SVMresults))
tunedParameters(SVMresults)[[1]]
## -------------------------------------------------------------------------------------------------------------------------------
selectParams <- SelectParams(edgeRselection, resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(classifyInterface)
predictParams <- PredictParams(NULL)
params = list(selectParams, trainParams, predictParams)
## -------------------------------------------------------------------------------------------------------------------------------
transformParams <- TransformParams(subtractFromLocation, intermediate = "training",
location = "median")
selectParams <- SelectParams(bartlettSelection,
resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(fisherDiscriminant)
predictParams <- PredictParams(NULL)
params = list(transformParams, selectParams, trainParams, predictParams)
## -------------------------------------------------------------------------------------------------------------------------------
selectParams <- SelectParams(KullbackLeiblerSelection,
resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(naiveBayesKernel)
predictParams <- PredictParams(NULL)
params = list(selectParams, trainParams, predictParams)
## -------------------------------------------------------------------------------------------------------------------------------
trainParams <- TrainParams(NSCtrainInterface)
selectParams <- SelectParams(NSCselectionInterface, intermediate = "trained")
predictParams <- PredictParams(NSCpredictInterface)
params = list(trainParams, selectParams, predictParams)
## -------------------------------------------------------------------------------------------------------------------------------
trainParams <- TrainParams(randomForestTrainInterface, ntree = 100, getFeatures = forestFeatures)
predictParams <- PredictParams(randomForestPredictInterface)
params = list(trainParams, predictParams)
## -------------------------------------------------------------------------------------------------------------------------------
selectParams <- SelectParams(differentMeansSelection, resubstituteParams = ResubstituteParams())
trainParams <- TrainParams(SVMtrainInterface, kernel = "linear")
predictParams <- PredictParams(SVMpredictInterface)
params = list(selectParams, trainParams, predictParams)
## ---- eval = FALSE--------------------------------------------------------------------------------------------------------------
# resubstituteParams <- ResubstituteParams(nFeatures = 1:10, # The top 1 to 10 sub-networks.
# performanceType = "balanced error", better = "lower")
# selectParams <- SelectParams(networkCorrelationsSelection, resubstituteParams = resubstituteParams)
# trainParams <- TrainParams(naiveBayesKernel)
# predictParams <- PredictParams(NULL)
# params <- list(selectParams, trainParams, predictParams)
# metaFeatures <- interactorDiffsTable # Creation by interactorDifferences function is suggested.
# featureSets <- networkSets # An object of class FeatureSetCollection.
## ---- echo = FALSE--------------------------------------------------------------------------------------------------------------
htmltools::img(src = knitr::image_uri("functionRules.png"),
style = 'margin-left: auto;margin-right: auto')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.