R/assignChromosomeRegion.R

Defines functions assignChromosomeRegion

Documented in assignChromosomeRegion

#import GenomicFeatures
## Jianhong Ou @ Mar.20, 2013


#' Summarize peak distribution over exon, intron, enhancer, proximal promoter,
#' 5 prime UTR and 3 prime UTR
#' 
#' Summarize peak distribution over exon, intron, enhancer, proximal promoter,
#' 5 prime UTR and 3 prime UTR
#' 
#' 
#' @param peaks.RD peaks in GRanges: See example below
#' @param exon exon data obtained from getAnnotation or customized annotation
#' of class GRanges containing additional variable: strand (1 or + for plus
#' strand and -1 or - for minus strand). This parameter is for backward
#' compatibility only.  \code{\link[GenomicFeatures:TxDb-class]{TxDb}} should
#' be used instead.
#' @param TSS TSS data obtained from getAnnotation or customized annotation of
#' class GRanges containing additional variable: strand (1 or + for plus strand
#' and -1 or - for minus strand). For example,
#' data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37), data(TSS.rat.RGSC3.4) and
#' data(TSS.zebrafish.Zv8). This parameter is for backward compatibility only.
#' \code{\link[GenomicFeatures:TxDb-class]{TxDb}} should be used instead.
#' @param utr5 5 prime UTR data obtained from getAnnotation or customized
#' annotation of class GRanges containing additional variable: strand (1 or +
#' for plus strand and -1 or - for minus strand). This parameter is for
#' backward compatibility only.  \code{\link[GenomicFeatures:TxDb-class]{TxDb}}
#' should be used instead.
#' @param utr3 3 prime UTR data obtained from getAnnotation or customized
#' annotation of class GRanges containing additional variable: strand (1 or +
#' for plus strand and -1 or - for minus strand). This parameter is for
#' backward compatibility only.  \code{\link[GenomicFeatures:TxDb-class]{TxDb}}
#' should be used instead.
#' @param proximal.promoter.cutoff Specify the cutoff in bases to classify
#' proximal promoter or enhencer. Peaks that reside within
#' proximal.promoter.cutoff upstream from or overlap with transcription start
#' site are classified as proximal promoters. Peaks that reside upstream of the
#' proximal.promoter.cutoff from gene start are classified as enhancers. The
#' default is 1000 bases.
#' @param immediate.downstream.cutoff Specify the cutoff in bases to classify
#' immediate downstream region or enhancer region. Peaks that reside within
#' immediate.downstream.cutoff downstream of gene end but not overlap 3 prime
#' UTR are classified as immediate downstream.  Peaks that reside downstream
#' over immediate.downstreatm.cutoff from gene end are classified as enhancers.
#' The default is 1000 bases.
#' @param nucleotideLevel Logical. Choose between peak centric and nucleotide
#' centric view. Default=FALSE
#' @param precedence If no precedence specified, double count will be enabled,
#' which means that if a peak overlap with both promoter and 5'UTR, both
#' promoter and 5'UTR will be incremented. If a precedence order is specified,
#' for example, if promoter is specified before 5'UTR, then only promoter will
#' be incremented for the same example.  The values could be any conbinations
#' of "Promoters", "immediateDownstream", "fiveUTRs", "threeUTRs", "Exons" and
#' "Introns", Default=NULL
#' @param TxDb an object of \code{\link[GenomicFeatures:TxDb-class]{TxDb}}
#' @return A list of two named vectors: percentage and jaccard (Jaccard Index).
#' The information in the vectors: \item{list("Exons")}{Percent or the picard
#' index of the peaks resided in exon regions.} \item{list("Introns")}{Percent
#' or the picard index of the peaks resided in intron regions.}
#' \item{list("fiveUTRs")}{Percent or the picard index of the peaks resided in
#' 5 prime UTR regions.} \item{list("threeUTRs")}{Percent or the picard index
#' of the peaks resided in 3 prime UTR regions.}
#' \item{list("Promoter")}{Percent or the picard index of the peaks resided in
#' proximal promoter regions.} \item{list("ImmediateDownstream")}{Percent or
#' the picard index of the peaks resided in immediate downstream regions.}
#' \item{list("Intergenic.Region")}{Percent or the picard index of the peaks
#' resided in intergenic regions.}
#' 
#' The Jaccard index, also known as Intersection over Union.  The Jaccard index
#' is between 0 and 1. The higher the index, the more significant the overlap
#' between the peak region and the genomic features in consideration.
#' @author Jianhong Ou, Lihua Julie Zhu
#' @seealso \link{genomicElementDistribution}, \link{genomicElementUpSetR},
#' \link{binOverFeature}, \link{binOverGene}, \link{binOverRegions}
#' @references 1. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package
#' to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010,
#' 11:237doi:10.1186/1471-2105-11-237
#' 
#' 2. Zhu L.J. (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset.
#' Methods Mol Biol. 2013;1067:105-24. doi: 10.1007/978-1-62703-607-8\_8.
#' @keywords misc
#' @export
#' @import IRanges
#' @import GenomicRanges
#' @importFrom GenomeInfoDb keepSeqlevels seqlevels
#' @importFrom BiocGenerics start end width strand
#' @importFrom GenomicFeatures exons intronsByTranscript fiveUTRsByTranscript 
#' threeUTRsByTranscript transcripts microRNAs tRNAs
#' @examples
#' 
#' if (interactive() || Sys.getenv("USER")=="jianhongou"){
#'     ##Display the list of genomes available at UCSC:
#'     #library(rtracklayer)
#'     #ucscGenomes()[, "db"]
#'     ## Display the list of Tracks supported by makeTxDbFromUCSC()
#'     #supportedUCSCtables()
#'     ##Retrieving a full transcript dataset for Human from UCSC
#'     ##TranscriptDb <- 
#'     ##     makeTxDbFromUCSC(genome="hg19", tablename="ensGene")
#'     if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
#'       TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
#'       exons <- exons(TxDb, columns=NULL)
#'       fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
#'       Feature.distribution <- 
#'           assignChromosomeRegion(exons, nucleotideLevel=TRUE, TxDb=TxDb)
#'       barplot(Feature.distribution$percentage)
#'       assignChromosomeRegion(fiveUTRs, nucleotideLevel=FALSE, TxDb=TxDb)
#'       data(myPeakList)
#'       assignChromosomeRegion(myPeakList, nucleotideLevel=TRUE, 
#'                              precedence=c("Promoters", "immediateDownstream", 
#'                                           "fiveUTRs", "threeUTRs", 
#'                                           "Exons", "Introns"), 
#'                              TxDb=TxDb)
#'     }
#' }
#' 
assignChromosomeRegion <-
    function(peaks.RD, exon, TSS, utr5, utr3, 
             proximal.promoter.cutoff=1000L, 
             immediate.downstream.cutoff=1000L, 
             nucleotideLevel=FALSE, 
             precedence=NULL, TxDb=NULL)
    {
        ##check inputs
        if(!is.null(TxDb)){
            if(!inherits(TxDb, "TxDb")) 
                stop("TxDb must be an object of TxDb, 
                     try\n?TxDb\tto see more info.")
            if(!inherits(peaks.RD, c("GRanges"))) 
                stop("peaks.RD must be a GRanges object.")
            if(!is.null(precedence)) {
                if(!all(precedence %in% c("Exons", "Introns", "fiveUTRs", 
                                          "threeUTRs", "Promoters", 
                                          "immediateDownstream"))) 
                    stop("precedence must be a combination of 
                         Exons, Introns, fiveUTRs, threeUTRs, 
                         Promoters, immediateDownstream")
            }
            ignore.strand <- all(as.character(strand(peaks.RD))=="*")
            exons <- exons(TxDb, columns=NULL)
            introns <- unique(unlist(intronsByTranscript(TxDb)))
            fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
            threeUTRs <- unique(unlist(threeUTRsByTranscript(TxDb)))
            transcripts <- unique(transcripts(TxDb, columns=NULL))
            options(warn = -1)
            try({
                promoters <- 
                    unique(promoters(TxDb, upstream=proximal.promoter.cutoff, 
                                     downstream=0))
                immediateDownstream <- 
                    unique(flank(transcripts, 
                                 width=immediate.downstream.cutoff, 
                                 start=FALSE, use.names=FALSE))
            })
            microRNAs <- tryCatch(microRNAs(TxDb), 
                                  error=function(e) return(NULL))
            tRNAs <- tryCatch(tRNAs(TxDb), error=function(e) return(NULL))
            options(warn = 0)
            annotation <- list(exons, introns, fiveUTRs, threeUTRs, 
                               promoters, immediateDownstream)
            if(!is.null(microRNAs)) 
                annotation <- c(annotation, "microRNAs"=microRNAs)
            if(!is.null(tRNAs)) 
                annotation <- c(annotation, "tRNAs"=tRNAs)
            annotation <- 
                lapply(annotation, function(.anno){mcols(.anno)<-NULL; .anno})
            names(annotation)[1:6] <- 
                c("Exons", "Introns", "fiveUTRs", "threeUTRs", 
                  "Promoters", "immediateDownstream")
            ###clear seqnames, the format should be chr+NUM
            peaks.RD <- formatSeqnames(peaks.RD, exons)
            peaks.RD <- unique(peaks.RD)
            annotation <- GRangesList(annotation)
            newAnno <- c(unlist(annotation))
            if(ignore.strand){
              newAnno.rd <- newAnno
              strand(newAnno.rd) <- "*"
              newAnno.rd <- reduce(trim(newAnno.rd))
              Intergenic.Region <- gaps(newAnno.rd, end=seqlengths(TxDb))
              Intergenic.Region <- 
                Intergenic.Region[strand(Intergenic.Region)=="*"]
            }else{
              newAnno.rd <- reduce(trim(newAnno))
              Intergenic.Region <- gaps(newAnno.rd, end=seqlengths(TxDb))
              Intergenic.Region <- 
                Intergenic.Region[strand(Intergenic.Region)!="*"]
            }
            if(!all(seqlevels(peaks.RD) %in% seqlevels(newAnno))){
                warning("peaks.RD has sequence levels not in TxDb.")
                sharedlevels <- 
                    intersect(seqlevels(newAnno), seqlevels(peaks.RD))
                peaks.RD <- keepSeqlevels(peaks.RD, sharedlevels, 
                                          pruning.mode="coarse")
            }
            mcols(peaks.RD) <- NULL
            if(!is.null(precedence)){
                annotation <- 
                    annotation[unique(c(precedence,names(annotation)))]
            }
            ##    annotation$Intergenic.Region <- peaks.RD
            names(Intergenic.Region) <- NULL
            annotation$Intergenic.Region <- Intergenic.Region
            anno.names <- names(annotation)
            ol.anno <- findOverlaps(peaks.RD, annotation,
                                    ignore.strand=ignore.strand)
            if(nucleotideLevel){
              ## calculate Jaccard index
              jaccardIndex <- unlist(lapply(annotation, function(.ele){
                intersection <- intersect(.ele, peaks.RD, 
                                          ignore.strand=ignore.strand)
                union <- union(.ele, peaks.RD, ignore.strand=ignore.strand)
                sum(as.numeric(width(intersection)))/
                    sum(as.numeric(width(union)))
              }))
              jaccardIndex <- jaccardIndex[anno.names]
              names(jaccardIndex) <- anno.names
              jaccardIndex[is.na(jaccardIndex)] <- 0
              
              ## create a new annotations
              newAnno <- unlist(annotation)
              newAnno$source <- rep(names(annotation), lengths(annotation))
              newAnno.disjoin <- disjoin(newAnno, with.revmap=TRUE, 
                                         ignore.strand=ignore.strand)
              if(!is.null(precedence)){
                revmap <- cbind(from=unlist(newAnno.disjoin$revmap), 
                                to=rep(seq_along(newAnno.disjoin), 
                                       lengths(newAnno.disjoin$revmap)))
                revmap <- revmap[order(revmap[, "to"], revmap[, "from"]), , drop=FALSE]
                revmap <- revmap[!duplicated(revmap[, "to"]), , drop=FALSE]
                newAnno.disjoin$source <- newAnno[revmap[, "from"]]$source
              }else{
                revmap <- unlist(newAnno.disjoin$revmap)
                newAnno.disjoin <- rep(newAnno.disjoin, lengths(newAnno.disjoin$revmap))
                newAnno.disjoin$source <- newAnno[revmap]$source
              }
              ol.anno <- findOverlaps(peaks.RD, newAnno.disjoin, ignore.strand=ignore.strand)
              queryHits <- peaks.RD[queryHits(ol.anno)]
              subjectHits <- newAnno.disjoin[subjectHits(ol.anno)]
              totalLen <- sum(as.numeric(width(peaks.RD)))
              queryHits.list <- split(queryHits, subjectHits$source)
              lens <- unlist(lapply(queryHits.list, function(.ele) 
                sum(as.numeric(width(unique(.ele))))))
              percentage <- 100 * lens/totalLen
            }else{
                ##calculate Jaccard index
                ol.anno.splited <- split(queryHits(ol.anno),
                                         anno.names[subjectHits(ol.anno)])
                jaccardIndex <- unlist(lapply(anno.names, function(.name){
                    union <- length(annotation[[.name]]) + 
                        length(peaks.RD) - 
                        length(unique(subjectHits(findOverlaps(peaks.RD, 
                                                               annotation[[.name]], 
                                                               ignore.strand=ignore.strand))))
                    intersection <- length(ol.anno.splited[[.name]])
                    intersection/union
                }))
                names(jaccardIndex) <- anno.names
                ol.anno <- as.data.frame(ol.anno)
                ####keep the part only annotated in peaks.RD for peaks.RD
                ol.anno.splited <- split(ol.anno, ol.anno[,2])
                hasAnnoHits <- 
                  do.call(rbind, 
                          ol.anno.splited[names(ol.anno.splited)!=
                                            as.character(length(annotation))])
                hasAnnoHits <- unique(hasAnnoHits[,1])
                ol.anno <- 
                  ol.anno[!(ol.anno[,2]==length(annotation) & 
                              (ol.anno[,1] %in% hasAnnoHits)), ]    
                if(!is.null(precedence)){
                  ol.anno <- ol.anno[!duplicated(ol.anno[,1]), ]
                }
                ##calculate percentage
                subjectHits <-anno.names[ol.anno[,2]]
                counts <- table(subjectHits)
                percentage <- 100 * counts / length(peaks.RD)
            }
            len <- length(anno.names) - length(percentage)
            if(len>0) {
                tobeadd <- rep(0, len)
                names(tobeadd) <- anno.names[!anno.names %in% 
                                                 names(percentage)]
                percentage <- c(percentage, tobeadd)
            }
            percentage <- percentage[anno.names]
            return(list(percentage=percentage, jaccard=jaccardIndex))
        }else{
            message("Please try to use TxDb next time. Try\n
                    ?TxDb\tto see more info.")
            annotationList <- list(exon, TSS, utr5, utr3)
            names(annotationList) <- c("Exon", "TSS", "UTR5", "UTR3")
            status <- lapply(annotationList, function(.ele) {
                if(!inherits(.ele, "GRanges")){
                    stop("Annotation of exon, TSS, utr5, utr3 must 
                         be objects of GRanges.")
                }
            })
            if(!inherits(peaks.RD, "GRanges")) 
                stop("peaks.RD must be a GRanges object.") 
            ann.peaks <- annotatePeakInBatch(peaks.RD, AnnotationData = TSS)
            ann.peaks <- ann.peaks[!is.na(ann.peaks$distancetoFeature)]
            upstream <- 
                ann.peaks[ ann.peaks$insideFeature=="upstream" | 
                               (ann.peaks$distancetoFeature<0 & 
                                    ann.peaks$insideFeature == "overlapStart" & 
                                    abs(ann.peaks$distancetoFeature) >
                                    ann.peaks$shortestDistance ) | 
                               ann.peaks$insideFeature=="includeFeature" | 
                               (ann.peaks$distancetoFeature>=0 & 
                                    ann.peaks$insideFeature =="overlapStart" & 
                                    ann.peaks$distancetoFeature ==
                                    ann.peaks$shortestDistance)]
            
            proximal.promoter.n <- 
                length(upstream[upstream$distancetoFeature >= 
                                    -proximal.promoter.cutoff | 
                                    upstream$shortestDistance <= 
                                    proximal.promoter.cutoff])
            enhancer.n <- length(upstream) - proximal.promoter.n
            
            downstream <- ann.peaks[ann.peaks$insideFeature =="downstream"]
            immediateDownstream.n <- 
                length(downstream[downstream$distancetoFeature <= 
                                      immediate.downstream.cutoff,])
            enhancer.n <- enhancer.n + 
                dim(downstream[downstream$distancetoFeature > 
                                   immediate.downstream.cutoff,])
            
            inside.peaks <- 
                ann.peaks[ann.peaks$insideFeature =="inside" | 
                              ann.peaks$insideFeature ==
                              "overlapEnd" |  
                              (ann.peaks$insideFeature == "overlapStart" & 
                                   ann.peaks$distancetoFeature >=0 & 
                                   ann.peaks$distancetoFeature != 
                                   ann.peaks$shortestDistance) | 
                              (ann.peaks$insideFeature =="overlapStart" & 
                                   ann.peaks$distancetoFeature <0 & 
                                   abs(ann.peaks$distancetoFeature) ==
                                   ann.peaks$shortestDistance)]
            
            ann.utr5.peaks <- annotatePeakInBatch(inside.peaks, 
                                                  AnnotationData = utr5)
            
            proximal.promoter.n <- proximal.promoter.n + 
                length(ann.utr5.peaks[ann.utr5.peaks$insideFeature==
                                          "upstream"])
            
            utr5.n <- length(
                ann.utr5.peaks[ann.utr5.peaks$insideFeature %in% 
                                   c("includeFeature" , "inside") | 
                               (ann.utr5.peaks$insideFeature =="overlapStart" & 
                                    ann.utr5.peaks$distancetoFeature >=0 & 
                                    ann.utr5.peaks$distancetoFeature != 
                                    ann.utr5.peaks$shortestDistance)  | 
                                (ann.utr5.peaks$insideFeature =="overlapStart" & 
                                     ann.utr5.peaks$distancetoFeature <0 & 
                                     abs(ann.utr5.peaks$distancetoFeature)==
                                     ann.utr5.peaks$shortestDistance) | 
                                (ann.utr5.peaks$insideFeature =="overlapEnd" & 
                                     ann.utr5.peaks$strand=="+" & 
                                     abs(start(ann.utr5.peaks)-
                                             ann.utr5.peaks$end_position) >= 
                                     (end(ann.utr5.peaks)-
                                          ann.utr5.peaks$end_position)) | 
                                (ann.utr5.peaks$insideFeature =="overlapEnd" & 
                                     ann.utr5.peaks$strand=="-" & 
                                     abs(end(ann.utr5.peaks)-
                                             ann.utr5.peaks$start_position) >= 
                                     abs(start(ann.utr5.peaks)-
                                             ann.utr5.peaks$start_position ))])
            
            proximal.promoter.n <- 
                proximal.promoter.n +  
                length(
                    ann.utr5.peaks[
                        (ann.utr5.peaks$insideFeature =="overlapStart" & 
                             ann.utr5.peaks$distancetoFeature >=0 & 
                             ann.utr5.peaks$distancetoFeature == 
                             ann.utr5.peaks$shortestDistance)  | 
                            (ann.utr5.peaks$insideFeature =="overlapStart" & 
                                 ann.utr5.peaks$distancetoFeature <0 & 
                                 abs(ann.utr5.peaks$distancetoFeature) !=
                                 ann.utr5.peaks$shortestDistance)])
            
            downstream.utr5 <-
                ann.utr5.peaks[
                    ann.utr5.peaks$insideFeature =="downstream" |
                        (ann.utr5.peaks$insideFeature =="overlapEnd" & 
                             ann.utr5.peaks$strand=="+" & 
                             abs(start(ann.utr5.peaks)-
                                     ann.utr5.peaks$end_position) < 
                             (end(ann.utr5.peaks)-
                                  ann.utr5.peaks$end_position)) | 
                        (ann.utr5.peaks$insideFeature =="overlapEnd" & 
                             ann.utr5.peaks$strand=="-" & 
                             abs(end(ann.utr5.peaks)-
                                     ann.utr5.peaks$start_position) < 
                             abs(start(ann.utr5.peaks)-
                                     ann.utr5.peaks$start_position ))] 
            
            ann.utr3.peaks <- annotatePeakInBatch(downstream.utr5, 
                                                  AnnotationData = utr3)
            
            utr3.n <- 
                length(ann.utr3.peaks[ann.utr3.peaks$insideFeature %in% 
                                          c("includeFeature" , "overlapStart", 
                                            "overlapEnd", "inside")])
            
            rest.peaks <- ann.utr3.peaks[ann.utr3.peaks$insideFeature %in% 
                                             c("downstream", "upstream")]
            
            ann.rest.peaks <- annotatePeakInBatch(rest.peaks, 
                                                 AnnotationData = exon)
            
            intron.n <- length(ann.rest.peaks[ann.rest.peaks$insideFeature %in%
                                                  c("downstream", "upstream")])
            exon.n <- length(ann.rest.peaks) - intron.n
            
            total = length(peaks.RD)/100
            
            list( "Exons" =exon.n/total, 
                  "Introns"=intron.n/total, 
                  "fiveUTRs" = utr5.n/total, 
                  "threeUTRs" = utr3.n/total, 
                  "Promoters"= proximal.promoter.n/total, 
                  "immediate.Downstream" = immediateDownstream.n/total, 
                  "Intergenic.Region" = enhancer.n/total)
        }
    }

Try the ChIPpeakAnno package in your browser

Any scripts or data that you put into this service are public.

ChIPpeakAnno documentation built on April 1, 2021, 6:01 p.m.