Nothing
if(getRversion() >= "3.1.0") utils::globalVariables(c("myLoad"))
champ.QC <- function(beta = myLoad$beta,
pheno=myLoad$pd$Sample_Group,
mdsPlot=TRUE,
densityPlot=TRUE,
dendrogram=TRUE,
PDFplot=TRUE,
Rplot=TRUE,
Feature.sel="None",
resultsDir="./CHAMP_QCimages/")
{
message("[===========================]")
message("[<<<<< ChAMP.QC START >>>>>>]")
message("-----------------------------")
### Prepare Checking ###
if (!file.exists(resultsDir)) dir.create(resultsDir)
message("champ.QC Results will be saved in ",resultsDir)
message("[QC plots will be proceed with ",dim(beta)[1], " probes and ",dim(beta)[2], " samples.]\n")
if(min(beta,na.rm=TRUE)==0)
{
beta[beta==0] <- 0.000001
message("[",length(which(beta==0))," Zeros dectect in your dataset, will be replaced with 0.000001]\n")
}
if(ncol(beta)!=length(pheno)) stop("Dimension of DataSet Samples, pheno and name must be the same. Please check your input.")
message("<< Prepare Data Over. >>")
if(mdsPlot)
{
if(Rplot) mdsPlot(beta,numPositions=1000,sampGroups=pheno,colnames(beta))
if(PDFplot){
pdf(paste(resultsDir,"raw_mdsPlot.pdf",sep="/"),width=6,height=4)
mdsPlot(beta,numPositions=1000,sampGroups=pheno,colnames(beta))
dev.off()
}
message("<< plot mdsPlot Done. >>\n")
}
if(densityPlot)
{
if(Rplot) densityPlot(beta,sampGroups=pheno,main=paste("Density plot of raw data (",nrow(beta)," probes)",sep=""),xlab="Beta")
if(PDFplot){
pdf(paste(resultsDir,"raw_densityPlot.pdf",sep="/"),width=6,height=4)
densityPlot(beta,sampGroups=pheno,main=paste("Density plot of raw data (",nrow(beta)," probes)",sep=""),xlab="Beta")
dev.off()
}
message("<< Plot densityPlot Done. >>\n")
}
if(dendrogram)
{
if(Feature.sel=="None")
{
message("< Dendrogram Plot Feature Selection Method >: No Selection, directly use all CpGs to calculate distance matrix.")
hc <- hclust(dist(t(beta)))
}else if(Feature.sel=="SVD")
{
message("< Dendrogram Feature Selection Method >: Use top SVD CpGs to calculate distance matrix.")
SVD <- svd(beta)
rmt.o <- EstDimRMT(beta - rowMeans(beta))
M <- SVD$v[,1:rmt.o$dim]
rownames(M) <- colnames(beta)
colnames(M) <- paste("Component",c(1:rmt.o$dim))
hc <- hclust(dist(M))
}
dend <- as.dendrogram(hc)
MyColor <- rainbow(length(table(pheno)))
names(MyColor) <- names(table(pheno))
labels_colors(dend) <- MyColor[pheno[order.dendrogram(dend)]]
dend <- dend %>% set("labels_cex",0.8)
dend <- dend %>% set("leaves_pch", 19) %>% set("leaves_cex",0.6) %>% set("leaves_col",MyColor[pheno[order.dendrogram(dend)]])
if(Rplot)
{
plot(dend,center=TRUE,main=paste("All samples before normalization (",nrow(beta), " probes)",sep=""))
legend("topright",fill=MyColor,legend=names(MyColor))
}
if(PDFplot)
{
pdf(paste(resultsDir,"raw_SampleCluster.pdf",sep="/"),width=floor(log(ncol(beta))*3),height=floor(log(ncol(beta))*2))
plot(dend,center=TRUE,main=paste("All samples before normalization (",nrow(beta), " probes)",sep=""))
legend("topright",fill=MyColor,legend=names(MyColor))
dev.off()
}
message("<< Plot dendrogram Done. >>\n")
}
message("[<<<<<< ChAMP.QC END >>>>>>>]")
message("[===========================]")
message("[You may want to process champ.norm() next.]\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.