Nothing
# Wrapper to run different evaluation metrics
#' evalIntegration
#'
#' Function to evaluate sc data integration providing a framework for different
#' metrics. Metrics to evaluate mixing and preservance of the local/individual
#' structure are provided.
#'
#' @param metrics Character vector. Name of the metrics to apply. Must be one to
#' all of 'cms', 'ldfDiff', 'isi', 'mixingMetric', 'localStructure',
#' 'entropy'.
#' @param sce \code{SingleCellExperiment} object, with the integrated data.
#' @param group Character. Name of group/batch variable.
#' Needs to be one of \code{names(colData(sce))}.
#' @param dim_red Character. Name of embedding to use as subspace for distance
#' distributions. Default is "PCA".
#' @param assay_name Character. Name of the assay to use for PCA.
#' Only relevant if no existing 'dim_red' is provided.
#' Must be one of \code{names(assays(sce))}. Default is "logcounts".
#' @param n_dim Numeric. Number of dimensions to include to define the subspace.
#' @param res_name Character vector. Appendix of the result score's name
#' (e.g. method used to combine batches).
#' Needs to have the same length as metrics or NULL.
#' @param k Numeric. Number of k-nearest neighbours (knn) to use.
#' @param k_min Numeric. Minimum number of knn to include
#' (see \code{\link{cms}}). Relevant for metrics: 'cms'.
#' @param smooth Logical. Indicating if cms results should be smoothened within
#' each neighbourhood using the weigthed mean. Relevant for metric: 'cms'.
#' @param cell_min Numeric. Minimum number of cells from each group to be
#' included into the AD test. Should be > 4. Relevant for metric: 'cms'.
#' @param batch_min Numeric. Minimum number of cells per batch to include in to
#' the AD test. If set, neighbours will be included until batch_min cells from
#' each batch are present. Relevant for metrics: 'cms'.
#' @param unbalanced Boolean. If TRUE, neighbourhoods with only one batch present
#' will be set to NA. This way they are not included into any summaries or
#' smoothening. Relevant for metrics: 'cms'.
#' @param weight Boolean. If TRUE, batch probabilities to calculate the isi
#' score are weighted by the mean distance of their cells towards the cell
#' of interest. Relevant for metrics: 'isi'.
#' @param k_pos Numeric. Position of cell to be used as reference within mixing
#' metric. See \code{\link[Seurat]{MixingMetric}} for details.
#' Relevant for metric: 'mixingMetric'
#' @param sce_pre_list A list of \code{SingleCellExperiment} objects with single
#' datasets before integration. Names should correspond to levels in
#' \code{colData(sce_combined)[,group]}. Relevant for metric: 'ldfDiff'
#' @param dim_combined Character. Name of embeddings to use as subspace to
#' calculate LDF after integration. Default is \code{dim_red}.
#' Relevant for metric 'ldfDiff'.
#' @param assay_pre Character. Name of the assay to use for PCA.
#' Only relevant if no existing 'dim_red' is provided.
#' Must be one of \code{names(assays(sce_pre))}. Default is "logcounts".
#' Relevant for metric 'ldfDiff'.
#' @param n_combined Number of PCs to use in original space.
#' See \code{\link[Seurat]{LocalStruct}} for details.
#' Relevant for metric 'localStructure'.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying whether
#' cms scores shall be calculated in parallel. Relevant for metric: 'cms'.
#'
#' @details evalIntegration is a wrapper function for different metrics to
#' understand results of integrated single cell data sets.
#' In general there are metrics evaluationg the *mixing* of datasets, that is,
#' metrics that show whether there still is a bias for different datasets
#' after integration. Furthermore there are metrics to evaluate how well the
#' dataset internal structure has been retained, that is, metrics that show whether
#' there has been (potentially biological) signal removed or noise added by
#' integration.
#'
#' @section Metrics:
#' Here we provide the following metrics:
#' \describe{
#' \item{cms}{Cellspecific Mixing Score. Metric that tests the hypothesis
#' that group-specific distance distributions of knn cells have the same
#' underlying unspecified distribution. The score can be interpreted as the
#' data's probability within an equally mixed neighbourhood according to the
#' batch variable (see \code{\link{cms}}).}
#' \item{isi}{Inverse Simpson Index. Metric that uses the Inverse Simpson’s
#' Index to calculate the diversification within a specified
#' neighbourhood. The Simpson index describes the probability that two
#' entities are taken at random from the dataset and its inverse represent the
#' effective number of batches in a neighbourhood.
#' The inverse Simpson index has been proposed as a diversity score for batch
#' mixing in single cell RNAseq by Korunsky et al. They provide a
#' distance-based neighbourhood weightening in their Lisi package.}
#' \item{mixingMetric}{Mixing Metric. Metric using the median position of the
#' kth cell from each batch within its knn as a score. The lower the better
#' mixed is the neighbourhood. We implemented an equivalent version to the
#' one in the Seurat package (See \code{\link[Seurat]{MixingMetric}} and
#' \code{\link{mixMetric}}.)}
#' \item{entropy}{Shannon entropy. Metric calculating the Shannon entropy of
#' the batch/group variable within each cell's k-nearest neigbours.
#' For balanced batches the entropy is closer to 1 the higher the variables
#' randomness. For unbalanced batches entropy should only be used as a
#' relative metric in a comparative setting (See \code{\link{entropy}}.)}
#' \item{ldfDiff}{Local density factor differences. Metric that determines
#' cell-specific changes in the Local Density Factor before and after data
#' integration. A metric/difference close to 0 indicates no distortion of
#' the previous structure (see \code{\link{ldfDiff}}).}
#' \item{localStructure}{Local structure. Metric that compares the
#' intersection of knn from the same batch before and after integration
#' returning the average between all groups. The higher the more neighbours
#' were reproduced after integration. Here we implemented an equivalent
#' version to the one in the Seurat package
#' (See \code{\link[Seurat]{LocalStruct}} and \code{\link{locStructure}}
#' ).}
#' }
#'
#' @return A \code{SingleCellExperiment} with the chosen metric's score within
#' colData.
#' @export
#'
#' @references
#' Korsunsky I Fan J Slowikowski K Zhang F Wei K et. al. (2018).
#' Fast, sensitive, and accurate integration of single cell data with Harmony.
#' bioRxiv (preprint).
#'
#' Stuart T Butler A Hoffman P Hafemeister C Papalexi E et. al. (2019)
#' Comprehensive Integration of Single-Cell Data.
#' Cell.
#'
#' @examples
#' library(SingleCellExperiment)
#' sim_list <- readRDS(system.file("extdata/sim50.rds", package = "CellMixS"))
#' sce <- sim_list[[1]][, c(1:15, 300:320, 16:30)]
#' sce_batch1 <- sce[,colData(sce)$batch == "1"]
#' sce_batch2 <- sce[,colData(sce)$batch == "2"]
#' pre <- list("1" = sce_batch1, "2" = sce_batch2)
#'
#' sce <- evalIntegration(metrics = c("cms", "mixingMetric", "isi", "entropy"), sce, "batch", k = 20)
#' sce <- evalIntegration("ldfDiff", sce, "batch", k = 20, sce_pre_list = pre)
#'
#' @importFrom SingleCellExperiment reducedDims colData counts reducedDims<-
#' @importFrom magrittr %>% set_names
#' @importFrom methods is
#' @importFrom SummarizedExperiment colData<- assays assay assay<-
evalIntegration <- function(metrics, sce, group, dim_red = "PCA",
assay_name = "logcounts", n_dim = 10,
res_name = NULL, k = NULL, k_min = NA,
smooth = TRUE, cell_min = 10, batch_min = NULL,
unbalanced = FALSE, weight = TRUE, k_pos = 5,
sce_pre_list = NULL, dim_combined = dim_red,
assay_pre = "logcounts", n_combined = 10,
BPPARAM=SerialParam()){
#------------------- Check input parameter----------------------
metric_params <- c("cms", "ldfDiff", "isi", "mixingMetric",
"localStructure", "entropy")
if( !all(metrics %in% metric_params) ){
stop("Error: 'metrics' is unknown. Please define one or more of 'cms', 'isi',
'ldfDiff', 'mixingMetric', 'localStructure', 'entropy'")
}
if( !is(sce, "SingleCellExperiment" )){
stop("Error: 'sce' must be a 'SingleCellExperiment' object.")
}
if( !group %in% names(colData(sce)) ){
stop("Error: 'group' variable must be in 'colData(sce)'")
}
if( !is(colData(sce)[, group], "factor") ){
sce[[group]] <- as.factor(colData(sce)[, group])
}
#------------------overall parameter settings ------------------------
if( !is.null(res_name) ){
if( length(res_name) != length(metrics) ){
stop("Error: Define 'res_name' for all metrics to calculate'")
}
names(res_name) <- metrics
}
default <- ifelse(is.null(k), TRUE, FALSE)
#------------------ run metrics -------------------------------
#------------------ mixing-metrics ----------------------------
if( "cms" %in% metrics ){
#Set default parameter
if( is.null(res_name) ){
res_name[["cms"]] <- NULL
}
#Check parameter
if( is.null(k) ){
stop("Please specify 'k', the number of nearest neigbours to check
for equal mixing, e.g. median of cells/celltype.")
}
#run cms
sce <- cms(sce, k = k, group = group, dim_red = dim_red,
assay_name = assay_name, res_name = res_name[["cms"]],
k_min = k_min, batch_min = batch_min,
unbalanced = unbalanced, smooth = smooth, n_dim = n_dim,
cell_min = cell_min, BPPARAM = BPPARAM)
}
if( "isi" %in% metrics ){
#Set default parameter
if( is.null(k) ){
stop("Please specify 'k', the number of nearest neigbours to check
for equal mixing, e.g. median of cells/celltype.")
}
if( is.null(res_name) ){
res_name[["isi"]] <- NULL
}
#run isi
sce <- isi(sce, k = k, group = group, dim_red = dim_red,
assay_name = assay_name, weight = weight,
res_name = res_name[["isi"]], n_dim = n_dim)
}
if( "mixingMetric" %in% metrics ){
#Set default parameter
if( is.null(k) | default ){
k <- 300
}
#Check parameter
if( is.null(res_name) ){
res_name[["mixingMetric"]] <- NULL
}
#Run mixing metric
sce <- mixMetric(sce, k = k, group = group, dim_red = dim_red,
assay_name = assay_name, k_pos = k_pos,
res_name = res_name[["mixingMetric"]], n_dim = n_dim)
}
if( "entropy" %in% metrics ){
#Check parameter
if( is.null(k) | default ){
stop("Please specify 'k', the number of nearest neigbours to check
for equal mixing, e.g. median of cells/celltype.")
}
if( is.null(res_name) ){
res_name[["entropy"]] <- NULL
}
#run entropy
sce <- entropy(sce, group = group, k = k, dim_red = dim_red,
assay_name = assay_name, n_dim = n_dim,
res_name = res_name[["entropy"]])
}
#------------------ structure metrics ----------------------------
if( "ldfDiff" %in% metrics ){
#Set default parameter
if( is.null(k) | default ){
stop("Please specify 'k', the number of nearest neigbours to check
for structual changes")
}
if( is.null(res_name) ){
res_name[["ldfDiff"]] <- NULL
}
#run ldfDiff
sce <- ldfDiff(sce_pre_list = sce_pre_list, sce_combined = sce, group,
k = k, dim_red = dim_red, dim_combined = dim_combined,
assay_pre = assay_pre, assay_combined = assay_name,
n_dim = n_dim, res_name = res_name[["ldfDiff"]])
}
if( "localStructure" %in% metrics ){
#Set default parameter
if( is.null(k) | default ){
k <- 100
}
#Check parameter
if( n_dim > ncol(reducedDims(sce)[[dim_red]]) ){
warning("'n_dim' exceeds number of provided reduced dimensions.
Is set to max (all dims).")
n_dim <- ncol(reducedDims(sce)[[dim_red]])
}
#Run localStructure
sce <- locStructure(sce, dim_combined = dim_combined, group = group,
k = k, dim_red = dim_red, assay_name = assay_name,
n_dim = n_dim, n_combined = n_combined,
res_name = res_name[["localStructure"]])
}
return(sce)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.