Nothing
# A test function for functions in Significance Calculator
test_GetNumberOfPositiveAndNegativeEntries <- function() {
dataList <- matrix(c(1, 2, 3, 4, 5, 6, 7, -1, 1, 1, 0, -1, 1, +1), ncol = 2)
dataStats <- CausalR:::GetNumberOfPositiveAndNegativeEntries(dataList)
checkEquals(dataStats[1], 4)
checkEquals(dataStats[2], 2)
}
test_AnalysePredictionsList <- function() {
predictionData <- matrix(c(1, 2, 3, 4, 5, 6, 7, -1, 1, 1, 0, -1, -1, +1), ncol = 2)
predictionDataStats <- CausalR:::AnalysePredictionsList(predictionData, length(predictionData[, 1]))
checkEquals(predictionDataStats[1], 3)
checkEquals(predictionDataStats[2], 3)
checkEquals(predictionDataStats[3], 1)
}
test_GetScoreForNumbersOfCorrectandIncorrectPredictionsProducesCorrectOutput <- function() {
checkEquals(CausalR:::GetScoreForNumbersOfCorrectandIncorrectPredictions(c(5, 2, 1, 2)), 4)
checkEquals(CausalR:::GetScoreForNumbersOfCorrectandIncorrectPredictions(c(5, 7, 1, 2)), -1)
}
test_GetWeightForNumbersOfCorrectandIncorrectPredictionsProducesCorrectOutputWhenReturnLogIsFalse <- function() {
logOfFactorialOfPredictionListStats <- c(log(factorial(3)), log(factorial(2)), log(factorial(0)))
checkEquals(CausalR:::GetWeightForNumbersOfCorrectandIncorrectPredictions(1, 0, 1, 1, c(3, 2, 0), c(2, 1, 2), logOfFactorialOfPredictionListStats,
returnlog = FALSE), 6)
checkEquals(CausalR:::GetWeightForNumbersOfCorrectandIncorrectPredictions(2, 1, 0, 0, c(3, 2, 0), c(2, 1, 2), logOfFactorialOfPredictionListStats,
returnlog = FALSE), 3)
}
test_GetWeightForNumbersOfCorrectandIncorrectPredictionsProducesCorrectOutputWhenReturnLogIsTrue <- function() {
logOfFactorialOfPredictionListStats <- c(log(factorial(3)), log(factorial(2)), log(factorial(0)))
checkEquals(CausalR:::GetWeightForNumbersOfCorrectandIncorrectPredictions(1, 0, 1, 1, c(3, 2, 0), c(2, 1, 2), logOfFactorialOfPredictionListStats,
returnlog = TRUE), log(6))
checkEquals(CausalR:::GetWeightForNumbersOfCorrectandIncorrectPredictions(2, 1, 0, 0, c(3, 2, 0), c(2, 1, 2), logOfFactorialOfPredictionListStats,
returnlog = TRUE), log(3))
}
test_PopulateTheThreeByThreeContingencyTablePopulatesTableCorrectly <- function() {
# Test a symmetric case
predictionDataStats <- c(2, 3, 2)
experimentalDataStats <- c(2, 3, 2)
threeByThreeTable <- CausalR:::PopulateTheThreeByThreeContingencyTable(1, 1, 1, 1, predictionDataStats, experimentalDataStats)
checkEquals(length(threeByThreeTable), 9)
checkEquals(threeByThreeTable[1], 1)
checkEquals(threeByThreeTable[2], 1)
checkEquals(threeByThreeTable[3], 0)
checkEquals(threeByThreeTable[4], 1)
checkEquals(threeByThreeTable[5], 1)
checkEquals(threeByThreeTable[6], 1)
checkEquals(threeByThreeTable[7], 0)
checkEquals(threeByThreeTable[8], 1)
checkEquals(threeByThreeTable[9], 1)
predictionDataStats2 <- c(4, 3, 2)
experimentalDataStats2 <- c(2, 3, 4)
threeByThreeTable2 <- CausalR:::PopulateTheThreeByThreeContingencyTable(1, 1, 1, 1, predictionDataStats2, experimentalDataStats2)
checkEquals(length(threeByThreeTable), 9)
checkEquals(threeByThreeTable2[1], 1)
checkEquals(threeByThreeTable2[2], 1)
checkEquals(threeByThreeTable2[3], 2)
checkEquals(threeByThreeTable2[4], 1)
checkEquals(threeByThreeTable2[5], 1)
checkEquals(threeByThreeTable2[6], 1)
checkEquals(threeByThreeTable2[7], 0)
checkEquals(threeByThreeTable2[8], 1)
checkEquals(threeByThreeTable2[9], 1)
}
test_ComputePValueFromDistributionTableFromDistributionTableWorksGivenADistributionTable <- function() {
matrix1 <- matrix(c(1, 2, 3, 0.5, 0.4, 0.1), ncol = 2)
totalWeights <- sum(matrix1[, 2])
checkEquals(CausalR:::ComputePValueFromDistributionTable(1, matrix1, totalWeights), 1)
checkEquals(CausalR:::ComputePValueFromDistributionTable(2, matrix1, totalWeights), 0.5)
checkEquals(CausalR:::ComputePValueFromDistributionTable(3, matrix1, totalWeights), 0.1)
checkEquals(CausalR:::ComputePValueFromDistributionTable(4, matrix1, totalWeights), 0)
}
test_ComputePValueFromDistributionTableWorksGivenUnnormalisedDistributionTable <- function() {
matrix1 <- matrix(c(1, 2, 3, 5, 4, 1), ncol = 2)
totalWeights <- sum(matrix1[, 2])
checkEquals(CausalR:::ComputePValueFromDistributionTable(1, matrix1, totalWeights), 1)
checkEquals(CausalR:::ComputePValueFromDistributionTable(2, matrix1, totalWeights), 0.5)
checkEquals(CausalR:::ComputePValueFromDistributionTable(3, matrix1, totalWeights), 0.1)
checkEquals(CausalR:::ComputePValueFromDistributionTable(4, matrix1, totalWeights), 0)
}
test_CalculateSignificanceCallsCalculateSignificanceUsingCubicAlgorithm <- function() {
# Check that CalculateSignificance calls CalculateSignificanceUsingCubicAlgorithm correctly
pValue_direct <- CausalR::CalculateSignificanceUsingCubicAlgorithm(5, c(7, 4, 9), c(6, 6, 8), 1e-05)
pValue_indirect <- CausalR:::CalculateSignificance(5, c(7, 4, 9), c(6, 6, 8), 1e-05, TRUE)
checkEquals(pValue_direct, pValue_indirect)
}
test_CalculateSignificanceCallsCalculateSignificanceUsingQuarticAlgorithm <- function() {
# Check that CalculateSignificance calls CalculateSignificanceUsingQuarticAlgorithm correctly
pValue_direct <- CausalR::CalculateSignificanceUsingQuarticAlgorithm(5, c(7, 4, 9), c(6, 6, 8))
pValue_indirect <- CausalR:::CalculateSignificance(5, c(7, 4, 9), c(6, 6, 8), useCubicAlgorithm = FALSE)
checkEquals(pValue_direct, pValue_indirect)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.