Nothing
#### Legacy Cardinal 1.0 classes ####
## These classes and methods operating on them are
## now deprecated; the class definitions will remain
## for backward-compatibility with CardinalWorkflows
## and to support coercion/updating to newer classes
.Deprecated_Cardinal1 <- function(class1 = "MSImageSet",
class2 = "MSImagingExperiment") {
msg <- paste0("The ", sQuote(class1), " class is deprecated.")
if ( (missing(class1) && missing(class1)) || !missing(class2) ) {
msg <- paste0(msg, "\nUse as(object, ", sQuote(class2), ") to\n",
"return an updated version of this object.")
}
.Deprecated(msg=msg)
}
#### Pixel based AnnotatedDataFrame for imaging ####
## based on Biobase's AnnotatedDataFrame, but with
## additions that reflect that each row belongs to a pixel
## and multiple rows will belong to the same sample
## ------------------------------------------------
.IAnnotatedDataFrame <- setClass("IAnnotatedDataFrame",
contains = "AnnotatedDataFrame",
prototype = prototype(new("Versioned",
versions=c(IAnnotatedDataFrame="0.1.0"))))
#### 'Minimum Information About a Proteomics Experiment' - Imaging ####
## based on working MIAPE-Imaging document and imzML specification
## ---------------------------------------------------------------
setClass("MIAPE-Imaging",
slots = c(
## Experimental Info
title = "character",
abstract = "character",
url = "character",
pubMedIds = "character",
preprocessing = "list", # pre-processing NOT performed by Cardinal
other = "list",
## Responsible Person
name = "character",
lab = "character",
contact = "character",
## Histomorphological Classification
samples = "list", # sample ids
specimenOrigin = "character", # institution
specimenType = "character", # species, organ, ...
stainingMethod = "character", # H&E, etc.
## Tissue Preparation
tissueThickness = "numeric",
tissueWash = "character",
embeddingMethod = "character",
inSituChemistry = "character", # tryptic digest, ...
matrixApplication = "character", # application method
## Data Acquisition: Instrument Details
pixelSize = "numeric",
instrumentModel = "character",
instrumentVendor = "character",
massAnalyzerType = "character", # TOF, LTQ, ...
ionizationType = "character", # MALDI, DESI, ...
scanPolarity = "character",
## Data Acquisition: Control Software
softwareName = "character",
softwareVersion = "character",
## Data Acquisition: Scan Settings
scanType = "character",
scanPattern = "character",
scanDirection = "character",
lineScanDirection = "character",
imageShape = "character"),
contains = "MIAxE",
prototype = prototype(
new("Versioned", versions=c(classVersion("MIAxE"),
`MIAPE-Imaging`="0.1.0"))))
#### Class for pre-processing information for an 'MSImageSet' ####
## should store all of the calls and their parameters
## --------------------------------------------------
setClass("MSImageProcess",
slots = c(
files = "character",
normalization = "character",
smoothing = "character",
baselineReduction = "character",
spectrumRepresentation = "character",
peakPicking = "character",
centroided = "logical",
history = "list",
CardinalVersion = "character"),
contains = "Versioned",
prototype = prototype(
new("Versioned", versions=c(MSImageProcess="0.1.0")),
centroided = logical(1), # set up when reading dataset
CardinalVersion = character())) # set up in initialize
#### Class for generic imaging data ###
## simply holds an environment and a storage mode
## where elements of the environment are arrays
## --------------------------------------------
.ImageData <- setClass("ImageData",
slots = c(
data = "environment",
storageMode = "character"),
contains = "Versioned",
prototype = prototype(
new("Versioned", versions=c(ImageData="0.1.0")),
data = new.env(parent=emptyenv()), # re-assign in initialize
storageMode = "immutableEnvironment"))
#### Class for holding sparse image data ####
## feature vectors are stored as a matrix and the datacube
## can be reconstructed as an array on-the-fly
## --------------------------------------------
.SImageData <- setClass("SImageData",
slots = c(
coord = "data.frame",
positionArray = "array",
dim = "numeric",
dimnames = "list"),
contains = "ImageData",
prototype = prototype(
new("Versioned", versions=c(classVersion("ImageData"),
SImageData="0.1.0")),
coord = data.frame(x=numeric(), y=numeric()),
positionArray = array(0, dim=c(x=0, y=0)),
dim = c(0, 0),
dimnames = list(NULL, NULL)))
#### Class for MS imaging data ###
## allows methods for retrieving peak cubes, etc.
## ----------------------------------------------
.MSImageData <- setClass("MSImageData",
contains = "SImageData",
prototype = prototype(
new("Versioned", versions=c(classVersion("ImageData"),
classVersion("SImageData"), MSImageData="0.1.0")),
coord = data.frame(x=numeric(), y=numeric()),
positionArray = array(0, dim=c(x=0, y=0)),
dim = c(0, 0),
dimnames = list(NULL, NULL)))
#### Matrix-like class for sparse signals ####
## implemented using lists as hash tables
## ---------------------------------------
.Hashmat <- setClass("Hashmat",
slots = c(
data = "list",
keys = "character",
dim = "numeric",
dimnames = "list"),
contains = "Versioned",
prototype = prototype(
new("Versioned", versions=c(Hashmat="0.1.0")),
data = list(),
keys = character(),
dim = c(0, 0),
dimnames = list(NULL, NULL)))
#### Class for generic imaging datasets ####
## heavily inspired by structure of Biobase's eSet
## ------------------------------------------------
setClass("iSet",
slots = c(
imageData = "ImageData", # holds an immutable environment
pixelData = "IAnnotatedDataFrame", # analogous to phenoData
featureData = "AnnotatedDataFrame",
experimentData = "MIAxE",
protocolData = "AnnotatedDataFrame"),
contains = c("VersionedBiobase", "VIRTUAL"),
prototype = prototype(
new("VersionedBiobase", versions=c(iSet="0.1.0")),
imageData = .ImageData(),
pixelData = .IAnnotatedDataFrame(
dimLabels = c("pixelNames", "pixelColumns")),
featureData = new("AnnotatedDataFrame",
dimLabels = c("featureNames", "featureColumns")),
protocolData = new("AnnotatedDataFrame",
dimLabels = c("sampleNames", "sampleColumns"))))
#### Class for pixel-sparse imaging datasets ####
## extends iSet with metadata and methods for MS imaging
## ----------------------------------------------------
.SImageSet <- setClass("SImageSet",
slots = c(imageData = "SImageData"),
contains = "iSet",
prototype = prototype(
new("VersionedBiobase", versions=c(classVersion("iSet"),
SImageSet="0.1.0")),
imageData = .SImageData()))
#### Class for mass spectrometry imaging datasets ####
## extends SImageSet with metadata for MS imaging
## ----------------------------------------------
.MSImageSet <- setClass("MSImageSet",
slots = c(
processingData = "MSImageProcess",
experimentData = "MIAPE-Imaging"),
contains = "SImageSet",
prototype = prototype(
new("VersionedBiobase", versions=c(classVersion("iSet"),
classVersion("SImageSet"), MSImageSet="0.7.0")),
imageData = .MSImageData(),
processingData = new("MSImageProcess"),
experimentData = new("MIAPE-Imaging")))
#### Classes for collections of experimental analysis results ####
## ---------------------------------------------------------------
setClass("ResultSet",
slots = c(
resultData = "list",
modelData = "AnnotatedDataFrame"),
contains = c("iSet", "VIRTUAL"),
prototype = prototype(
new("VersionedBiobase", versions=c(classVersion("iSet"),
ResultSet="0.1.0"))))
setClass("CrossValidated", contains="ResultSet")
setClass("PCA", contains="ResultSet")
setClass("PLS", contains="ResultSet")
setClass("OPLS", contains="ResultSet")
setClass("SpatialFastmap", contains="ResultSet")
setClass("SpatialKMeans", contains="ResultSet")
setClass("SpatialShrunkenCentroids", contains="ResultSet")
####---------------------------------------------------####
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.