Description Usage Arguments Value See Also Examples
When the run.cin.chr
and run.cyto.chr
functions are
called, we get Chromosome and Cytoband CIN values for various gain/loss threshold settings.
This comp.heatmap
function can be used to pick the best threshold for the input data.
It plots heatmaps for two groups of interest (case and control) for all the input gain/loss threshold
settings. By visually checking the heatmaps, the user can pick the threshold/setting that shows the best
contrast between two groups of interest.
Steps:
#Step 1: Run cytoband CIN or chromosome CIN - using run.cin.chr()
or run.cin.cyto()
#Step 2: Call this function to create chromosome or cytoband level heatmaps. Pick gain/loss threshold
appropriate for data.
See vignette for more details.
1 2 3 4 5 |
R_or_C |
The value'Regular' plots chromosome level heatmap and 'Cytobands' plots cytoband level heatmaps |
clinical.inf |
An n*2 matrix, the 1st column is 'sample name', the second is 'label' |
genome.ucsc |
A Reference genome |
in.folder.name |
Name of folder where the Chromsome CIN or Cytoband CIN objects are present |
out.folder.name |
Name of folder where the Chromosome heatmaps or Cytoband heatmaps will be saved |
plot.choice |
A choice of whether the heatmaps should be .png or .pdf format |
base.color |
A choice of 'black' or 'white' base color for the heatmap (indicating no instability) |
thr.gain |
A threshold above which will be set as gain |
thr.loss |
A threshold below which will be set as loss |
V.def |
There are 2 different CIN definitions - normalized (value=2) and un-normalized (value=3) |
V.mode |
There are 3 options: 'sum', 'amp' and 'del' |
No value returned. If R_or_C='Regular', it will genearte chromosome level heatmap, If R_or_C='Cytobands',it will generate cytoband level heatmap
See accompanying vignette for end-to-end tutorial
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ###### Example 1 - Chromosome level
## Step 1: Run chromosome CIN
# This is how command should be run:
## Not run:
run.cin.chr(grl.seg = grl.data)
## End(Not run)
# For this example, we run chr CIN on one threshold only
data("grl.data")
run.cin.chr(grl.seg = grl.data, thr.gain=2.25, thr.loss=1.75, V.def=3, V.mode="sum")
## Step 2: Plot chromosome level heatmap
# This is how the command must be called:
## Not run:
comp.heatmap(R_or_C="Regular", clinical.inf=clin.crc, genome.ucsc=hg18.ucsctrack, thr.gain = 2.25,
thr.loss = 1.75,V.def = 3,V.mode = "sum")
## End(Not run)
# For this example, we run chr heatmap on one threshold only
comp.heatmap(R_or_C='Regular', clinical.inf=clin.crc, genome.ucsc=hg18.ucsctrack, thr.gain = 2.25,
thr.loss = 1.75,V.def = 3,V.mode = "sum")
###### Example 2 - Cytoband level
## Step 1 : Run cytoband CIN
# This is how command should be run:
## Not run:
run.cin.cyto(grl.seg = grl.data,cnvgr=cnvgr.18.auto, snpgr=snpgr.18.auto,
genome.ucsc = hg18.ucsctrack)
## Step 2: Plot cytoband level heatmap
comp.heatmap(R_or_C="Cytobands", clinical.inf=clin.crc, genome.ucsc=hg18.ucsctrack,
thr.gain=2.25, thr.loss=1.75,V.def=3,V.mode="sum")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.