Nothing
print.cellsurvLQdiff <- function(x, ...) { #fitcomp contains objects fit1, fit2, anv
##### Function definition part #####
catln <- function(...) {cat(...,"\n")}
print.fitval <- function(fit, type) {
if (type == "ml") {
rsswTot <- sum(fit$residuals^2*fit$weight) #total sum of squared weighted residuals
catln("Goodness-of-fit values")
catln(" Residual Deviance:", fit$deviance)
catln(" Total sum of squared weighted residuals rsswTot:", rsswTot)
catln(" Residual Degrees of Freedom:", fit$df.residual)
catln(" Dispersion parameter:", summary(fit)$dispersion)
}
if (type == "ls") {
#if (nrow(fit$data)!=nrow(fit$model)) stop("Error: more data rows than in the model!")
rssTot <- sum(fit$residuals^2) #total sum of squared residuals
catln()
catln("Goodness-of-fit values")
catln(" Total sum of squared residuals rssTot:", rssTot)
catln(" Residual Degrees of Freedom:", fit$df.residual)
catln(" Multiple R-squared:", summary(fit)$r.squared)
}
if (type == "franken") {
rsswTot <- sum(fit$residuals^2*fit$weight) #total sum of squared weighted residuals
catln("Goodness-of-fit values")
catln(" Total sum of squared weighted residuals rsswTot:", rsswTot)
catln(" Residual Degrees of Freedom:", fit$df.residual)
catln(" Multiple R-squared:", summary(fit)$r.squared)
}
}
##### Execution part #####
fitcomp <- x
if(!class(fitcomp)=="cellsurvLQdiff") stop("Fit object not of class 'cellsurvLQdiff'!")
#if (!("cfa" %in% fitcomp$type)) stop("fit object not of type 'cfa'!")
#if (fitcomp$PEmethod != "fit") stop("PEmethod not 'fit'. Use standard R, print(fit) or print(summary(fit))!")
fit <- fitcomp$fit2
sfit <- summary(fit)
coef <- sfit$coef
coef1 <- summary(fitcomp$fit1)$coef
nr <- nrow(coef)
nr1 <- nrow(coef1)
nam <- sub("factor\\(Exp\\)","PE",rownames(coef))
nam <- sub("dose2","beta",nam)
nam <- sub("dose","alpha",nam)
rownames(coef) <- nam
idx <- grep("dose",rownames(coef1))
nam1 <- sub("dose2","beta",rownames(coef1))
nam1 <- sub("dose","alpha",nam1)
rownames(coef1) <- nam1
catln("Overall comparison test for coefficients alpha and beta of LQ-models")
catln("====================================================================")
catln("method =", fitcomp$type[2])
catln("PEmethod =", fitcomp$PEmethod)
catln()
if (fitcomp$PEmethod == "fit") catln(nr-4, "PEs fitted as intercepts. To look at, use simple R print function.")
catln("Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data")
catln("----------------------------------------------------------------------------------")
print(coef1[idx,])
catln()
print.fitval(fitcomp$fit1, fitcomp$type[2])
catln()
catln("Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta")
catln("-----------------------------------------------------------------------------")
print(coef[(nr-3):nr,])
catln()
print.fitval(fit, fitcomp$type[2]) #fit is fitcomp$fit2, see lines before
catln()
anv <- fitcomp$anv
attr(anv, "heading") <- c("Analysis of Variance Table and F-test", "Model 2 versus Model 1")
print(anv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.