Nothing
plot.cellsurvLQfit <- function(x, xlim=NULL, ylim=c(0.008, 1.0), xlab="Dose (Gy)", ylab="Survival (1 = 100%)", col=1, pch=1, add=FALSE, ...) {
fit <- x
if(!class(fit)=="cellsurvLQfit") stop("Fit object not of class 'cellsurvLQfit'!")
#if (!"cfa" %in% fit$type) stop("Error: fit object not of type cfa!")
data <- fit$data
data$dose2 <- data$dose^2
data$lcells <- log(data$ncells) #falls LS
uexp <- unique(data$Exp)
doses <- unique(data$dose)
maxd <-max(doses)
b <- fit$coef[c("dose","dose2")]
if(is.null(xlim)) xlim <- c(0,maxd)
par(lwd=2)
if(!add)
curve(exp(b[1]*x + b[2]*x^2), from=0, to=maxd, log="y", col=col, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
if(add)
curve(exp(b[1]*x + b[2]*x^2), from=0, to=maxd, col=col, add=TRUE)
if(0 %in% doses) {
#b <- fit$coef
#S0 <- exp(b[1:length(unique(fit$data$Exp))]); S0
#nc <- length(unique(data$Exp))
# Plating efficiencies from seperate experiment fits (ML, possibly without 0-dose data):
S0 <- pes(data)$S0 #CFAssay function pes
names(S0) <- rownames(pes(data))
meanSF <- sfpmean(data, S0) #CFAssay function sfpmean
}
if(!(0 %in% doses)) {
data$pe <- exp(data$logPle)
meanSF <- sfpmean(data)
}
pts <- meanSF[1,]
sems <- meanSF[2,]
points(doses, pts, col=col, pch=pch)
segments(x0=doses, y0=pts-sems, x1=doses, y1=pts+sems, col=col)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.