Description Usage Arguments Value Examples
make the RBD object
1 2 3 4 |
.Object |
the object |
... |
other input (not needed) |
snp.gr |
SNP GenomicRanges object |
cnv.gr |
CNV GenomicRanges object |
unimodal.kurtosis |
kurtosis |
RBD object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | # load sample files
load(system.file("data", "cnv.gr.rda", package="BubbleTree"))
load(system.file("data", "snp.gr.rda", package="BubbleTree"))
# load annotations
load(system.file("data", "centromere.dat.rda", package="BubbleTree"))
load(system.file("data", "cyto.gr.rda", package="BubbleTree"))
load(system.file("data", "cancer.genes.minus2.rda", package="BubbleTree"))
load(system.file("data", "vol.genes.rda", package="BubbleTree"))
load(system.file("data", "gene.uni.clean.gr.rda", package="BubbleTree"))
# initialize RBD object
r <- new("RBD", unimodal.kurtosis=-0.1)
# create new RBD object with GenomicRanges objects for SNPs and CNVs
rbd <- makeRBD(r, snp.gr, cnv.gr)
head(rbd)
# create a new prediction
btreepredictor <- new("BTreePredictor", rbd=rbd, max.ploidy=6, prev.grid=seq(0.2,1, by=0.01))
pred <- btpredict(btreepredictor)
# create rbd plot
btreeplotter <- new("BTreePlotter", max.ploidy=5, max.size=10)
btree <- drawBTree(btreeplotter, pred@rbd)
print(btree)
# create rbd.adj plot
btreeplotter <- new("BTreePlotter", branch.col="gray50")
btree <- drawBTree(btreeplotter, pred@rbd.adj)
print(btree)
# create a combined plot with rbd and rbd.adj that shows the arrows indicating change
# THIS IS VERY MESSY WITH CURRENT DATA from Dong
btreeplotter <- new("BTreePlotter", max.ploidy=5, max.size=10)
arrows <- trackBTree(btreeplotter,
pred@rbd,
pred@rbd.adj,
min.srcSize=0.01,
min.trtSize=0.01)
btree <- drawBTree(btreeplotter, pred@rbd) + arrows
print(btree)
# create a plot with overlays of significant genes
btreeplotter <- new("BTreePlotter", branch.col="gray50")
annotator <- new("Annotate")
comm <- btcompare(vol.genes, cancer.genes.minus2)
sample.name <- "22_cnv_snv"
btree <- drawBTree(btreeplotter, pred@rbd.adj) +
ggplot2::labs(title=sprintf("%s (%s)", sample.name, info(pred)))
out <- pred@result$dist %>%
filter(seg.size >= 0.1 ) %>%
arrange(gtools::mixedorder(as.character(seqnames)), start)
ann <- with(out, {
annoByGenesAndCyto(annotator,
as.character(out$seqnames),
as.numeric(out$start),
as.numeric(out$end),
comm$comm,
gene.uni.clean.gr=gene.uni.clean.gr,
cyto.gr=cyto.gr)
})
out$cyto <- ann$cyto
out$genes <- ann$ann
btree <- btree + drawFeatures(btreeplotter, out)
print(btree)
# print out purity and ploidy values
info <- info(pred)
cat("\nPurity/Ploidy: ", info, "\n")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.