Nothing
context("counting spike-in reads")
library(BRGenomics)
# make a list of datasets with spike-in chromosomes -----------------------
gr1_rep1 <- GRanges(seqnames = c("chr1", "chr2", "spikechr1", "spikechr2"),
ranges = IRanges(start = 1:4, width = 1),
strand = "+")
gr3_rep2 <- gr3_rep1 <- gr2_rep2 <- gr2_rep1 <- gr1_rep2 <- gr1_rep1
# exp + spike = total
score(gr1_rep1) <- 1 # 2 + 2 = 4
score(gr2_rep1) <- 2 # 4 + 4 = 8
score(gr3_rep1) <- c(2, 2, 1, 1) # 4 + 2 = 6
score(gr1_rep2) <- c(1, 1, 2, 1) # 2 + 3 = 5
score(gr2_rep2) <- c(2, 3, 2, 2) # 5 + 4 = 9
score(gr3_rep2) <- c(4, 4, 2, 2) # 8 + 4 = 12
grl <- list(gr1_rep1, gr2_rep1, gr3_rep1,
gr1_rep2, gr2_rep2, gr3_rep2)
names(grl) <- c("gr1_rep1", "gr2_rep1", "gr3_rep1",
"gr1_rep2", "gr2_rep2", "gr3_rep2")
# test getting spike-in counts --------------------------------------------
s_counts <- getSpikeInCounts(grl, si_names = c("spikechr1", "spikechr2"),
ncores = 1)
sr <- s_counts$spike_reads
er <- s_counts$exp_reads
test_that("can get read counts from given spike-in chromosomes", {
expect_is(s_counts, "data.frame")
expect_equal(s_counts$sample, names(grl))
expect_equal(s_counts$total_reads, c(4, 8, 6, 5, 9, 12))
expect_equal(er, c(2, 4, 4, 2, 5, 8))
expect_equal(sr, c(2, 4, 2, 3, 4, 4))
})
test_that("can get read counts from pattern-matched spike-in chromosomes", {
expect_equivalent(s_counts,
getSpikeInCounts(grl, si_pattern = "spike", ncores = 1))
})
test_that("can get spike-in counts for GRanges input", {
expect_equivalent(s_counts[1, ],
getSpikeInCounts(gr1_rep1, si_pattern = "spike",
ncores = 1))
})
test_that("can get spike-in counts for NULL field", {
null_counts <- getSpikeInCounts(grl, si_pattern = "spike", field = NULL,
ncores = 1)
expect_equivalent(s_counts$sample, null_counts$sample)
expect_true(all(null_counts$total_reads == 4))
expect_true(all(null_counts$exp_reads == 2))
})
test_that("can get spike-in counts for multiple fields", {
grl_mix <- grl
grl_mix$gr1_rep1$newscore <- 2 # switching gr1_rep1 and gr2_rep1
grl_mix$gr2_rep1$newscore <- 1
mix_counts <- getSpikeInCounts(grl_mix, si_pattern = "spike",
field = c("newscore", "newscore", "score",
"score", "score", "score"),
ncores = 1)
expect_equivalent(s_counts[1:2, -1], mix_counts[2:1, -1])
})
test_that("spike in counts with expand_ranges", {
grl_exp <- lapply(grl, function(x) {
ranges(x) <- IRanges(start = c(1, 4, 5, 7),
end = c(3, 4, 6, 9))
x
})
exp_total <- sapply(grl_exp, function(x) sum(score(x) * width(x)))
exp_exp <- sapply(grl_exp, function(x) sum(score(x)[1:2] * width(x)[1:2]))
exp_spk <- sapply(grl_exp, function(x) sum(score(x)[3:4] * width(x)[3:4]))
exp_counts <- getSpikeInCounts(grl_exp,
si_names = c("spikechr1", "spikechr2"),
expand_ranges = TRUE,
ncores = 1)
expect_equivalent(exp_counts$total_reads, exp_total)
expect_equivalent(exp_counts$exp_reads, exp_exp)
expect_equivalent(exp_counts$spike_reads, exp_spk)
expect_error(getSpikeInCounts(grl_exp, si_pattern = "spike",
field = NULL, expand_ranges = TRUE))
})
# test subsetting by spike-in reads ---------------------------------------
context("subsetting GRanges by spike-in reads")
test_that("can filter out spike-in reads", {
gr <- removeSpikeInReads(gr1_rep1, si_pattern = "spike", ncores = 1)
expect_equivalent(gr, gr1_rep1[1:2])
trimlist <- removeSpikeInReads(grl[1:2], si_pattern = "spike", ncores = 1)
expect_is(trimlist, "list")
expect_equivalent(trimlist[[1]], gr)
expect_equivalent(trimlist[[2]], gr2_rep1[1:2])
})
test_that("can isolate spike-in reads", {
gr <- getSpikeInReads(gr1_rep1, si_pattern = "spike", ncores = 1)
expect_equivalent(gr, gr1_rep1[3:4])
trimlist <- getSpikeInReads(grl[1:2], si_pattern = "spike", ncores = 1)
expect_is(trimlist, "list")
expect_equivalent(trimlist[[1]], gr)
expect_equivalent(trimlist[[2]], gr2_rep1[3:4])
})
# test normalization factor calculations ----------------------------------
context("normalization factor calculations")
test_that("RPM normalization works", {
nf_rpm <- getSpikeInNFs(grl, si_pattern = "spike", method = "RPM",
ncores = 1)
expect_is(nf_rpm, "numeric")
expect_true(all(nf_rpm * er == 1e6))
})
test_that("RPM normalization for single GRanges object", {
nf_rpm <- getSpikeInNFs(grl[[1]], si_pattern = "spike", method = "RPM",
ncores = 1)
expect_equal(nf_rpm * er[1], 1e6)
})
test_that("simple spike-in read normalization", {
nf_snr <- getSpikeInNFs(grl, si_pattern = "spike", method = "SNR",
batch_norm = FALSE, ncores = 1)
expect_is(nf_snr, "numeric")
expect_true(all(nf_snr * sr == min(sr)))
})
test_that("batch-corrected spike-in read normalization", {
nf_snrb <- getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
method = "SNR", batch_norm = TRUE, ncores = 1)
expect_is(nf_snrb, "numeric")
# in each replicate, spike-in normalization
expect_true(all(nf_snrb[1:3] * sr[1:3] == min(sr[1:3])))
expect_true(all(nf_snrb[4:6] * sr[4:6] == min(sr[4:6])))
# spike-in reads across replicates are independent
expect_true(nf_snrb[1] * sr[1] != nf_snrb[4] * sr[4])
# but negative control normalized readcounts are the same
expect_equal(nf_snrb[1] * er[1], nf_snrb[4] * er[4])
})
si_ratio <- er / sr # spike-in normalized read counts
test_that("spike-in normalized RPM vs. control", {
nf_srpmcb <- getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
method = "SRPMC", batch_norm = TRUE,
ncores = 1)
expect_true(all(er[c(1,4)] * nf_srpmcb[c(1,4)] == 1e6))
expect_equivalent(si_ratio[1:3] / si_ratio[1],
nf_srpmcb[1:3] * er[1:3] / 1e6)
expect_equivalent(si_ratio[4:6] / si_ratio[4],
nf_srpmcb[4:6] * er[4:6] / 1e6)
})
test_that("spike-in normalized RPM vs. control, no batch normalization", {
# without batch normalization; takes average number of reads across controls
nf_srpmc <- getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
method = "SRPMC", batch_norm = FALSE,
ncores = 1)
expect_true(all(er[c(1,4)] * nf_srpmc[c(1,4)] != 1e6))
expect_equal(mean( er[c(1,4)] * nf_srpmc[c(1,4)] ), 1e6)
expect_equivalent(si_ratio / mean(si_ratio[c(1, 4)]),
nf_srpmc * er / 1e6)
})
test_that("error if give names and regex for control samples", {
expect_error(getSpikeInNFs(grl, ctrl_pattern = "gr1",
ctrl_names = c("gr1_rep1", "gr1_rep2")))
})
# Normalizing GRanges objects ---------------------------------------------
context("normalizing GRanges objects")
test_that("can RPM norm a single GRanges object", {
gr1_rpm <- spikeInNormGRanges(grl[[1]], method = "RPM", ncores = 1)
expect_is(gr1_rpm, "GRanges")
expect_equivalent(2.5e5*score(grl[[1]]), score(gr1_rpm))
})
test_that("can spike-in normalize a GRanges with field = NULL", {
gr_ones <- grl[[1]]
score(gr_ones) <- 1
gr_ones1 <- spikeInNormGRanges(gr_ones, method = "RPM", ncores = 1)
expect_message(gr_ones2 <- spikeInNormGRanges(grl[[1]], field = NULL,
method = "RPM", ncores = 1))
expect_identical(gr_ones1, gr_ones2)
expect_equivalent(gr_ones1$score, gr_ones2$score)
})
test_that("correctly spike-in normalize multiple GRanges objects", {
nf_snr <- getSpikeInNFs(grl[1:2], si_pattern = "spike", method = "SNR",
batch_norm = FALSE, ncores = 1)
# snr with 1 and 2 makes them identical
norm12snr <- spikeInNormGRanges(grl[1:2], si_pattern = "spike",
method = "SNR", batch_norm = FALSE,
ncores = 1)
expect_is(norm12snr, "list")
expect_is(norm12snr[[1]], "GRanges")
expect_identical(norm12snr[[1]], norm12snr[[2]])
})
# Subsampling by spike-in -------------------------------------------------
context("subsampling by spike-in NFs")
test_that("can subsample single GRanges by spike-in NF", {
gr_ss <- subsampleBySpikeIn(grl[[1]], si_pattern = "spike",
batch_norm = FALSE, ncores = 1)
expect_equal(sum(score(gr_ss)), sum(score(grl[[1]][1:2])))
})
test_that("subsampled GRanges list have correct readcounts", {
grl_ss <- subsampleBySpikeIn(grl, si_pattern = "spike", batch_norm = FALSE,
ncores = 1)
grl_nf_snr <- getSpikeInNFs(grl, si_pattern = "spike", method = "SNR",
batch_norm = FALSE, ncores = 1)
# (ranges 3 and 4 are the spike-ins)
counts <- floor(sapply(grl, function(x) sum(score(x[1:2]))) * grl_nf_snr)
expect_equivalent(counts, sapply(grl_ss, function(x) sum(score(x))))
grl_ss_rpm <- subsampleBySpikeIn(grl, si_pattern = "spike",
batch_norm = FALSE, ctrl_pattern = "gr1",
RPM_units = TRUE, ncores = 1)
})
grl_ones <- lapply(grl, function(x) {
score(x) <- 1
x
})
test_that("can subsample with field = NULL", {
sslones <- subsampleBySpikeIn(grl_ones, si_pattern = "spike",
batch_norm = FALSE, ncores = 1)
nullsslones <- subsampleBySpikeIn(grl_ones, si_pattern = "spike",
batch_norm = FALSE, field = NULL,
ncores = 1)
expect_equivalent(sapply(sslones, function(x) sum(score(x))),
sapply(nullsslones, function(x) sum(score(x))))
})
test_that("can subsample with field = NULL and RPM_units", {
sslonesr <- subsampleBySpikeIn(grl_ones, si_pattern = "spike",
batch_norm = FALSE, ctrl_pattern = "gr1",
RPM_units = TRUE, ncores = 1)
nullsslonesr <- subsampleBySpikeIn(grl_ones, si_pattern = "spike",
batch_norm = FALSE, ctrl_pattern = "gr1",
RPM_units = TRUE, field = NULL,
ncores = 1)
expect_equivalent(sapply(sslonesr, function(x) sum(score(x))),
sapply(nullsslonesr, function(x) sum(score(x))))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.