Nothing
### R code from vignette source 'BLMA.Rnw'
###################################################
### code chunk number 1: BLMA.Rnw:114-142
###################################################
# one-sample tests
library(BLMA)
set.seed(1)
x <- rnorm(10, mean = 0)
# one-sample left-tailed t-test
t.test(x, mu=1, alternative = "less")$p.value
# one-sample left-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, func=t.test, mu=1, alternative = "less")
# one-sample right-tailed t-test
t.test(x, mu=1, alternative = "greater")$p.value
# one-sample right-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, func=t.test, mu=1, alternative = "greater")
# one-sample two-tailed t-test
t.test(x, mu=1)$p.value
# one-sample two-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, func=t.test, mu=1)
# one-sample left-tailed Wilcoxon test
wilcox.test(x, mu=1, alternative = "less")$p.value
# one-sample left-tailed intra-experiment analysis with Wilcoxon test
intraAnalysisClassic(x, func=wilcox.test, mu=1, alternative = "less")
# one-sample right-tailed Wilcoxon test
wilcox.test(x, mu=1, alternative = "greater")$p.value
# one-sample right-tailed intra-experiment analysis with Wilcoxon test
intraAnalysisClassic(x, func=wilcox.test, mu=1, alternative = "greater")
# one-sample two-tailed Wilcoxon test
wilcox.test(x, mu=1)$p.value
# one-sample two-tailed intra-experiment analysis with Wilcoxon test
intraAnalysisClassic(x, func=wilcox.test, mu=1)
###################################################
### code chunk number 2: BLMA.Rnw:147-162
###################################################
# two-sample tests
set.seed(1)
x <- rnorm(20, mean=0); y=rnorm(20, mean=1)
# two-sample left-tailed t-test
t.test(x,y,alternative="less")$p.value
# two-sample left-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, y, func=t.test, alternative = "less")
# two-sample right-tailed t-test
t.test(x,y,alternative="greater")$p.value
# two-sample right-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, y, func=t.test, alternative = "greater")
# two-sample two-tailed t-test
t.test(x,y)$p.value
# two-sample two-tailed intra-experiment analysis with t-test
intraAnalysisClassic(x, y, func=t.test)
###################################################
### code chunk number 3: BLMA.Rnw:168-189
###################################################
# one-sample tests
set.seed(1)
l1 <- lapply(as.list(seq(3)),FUN=function (x) rnorm(n=10, mean=1))
l0 <- lapply(as.list(seq(3)),FUN=function (x) rnorm(n=10, mean=0))
# one-sample right-tailed t-test
lapply(l1, FUN=function(x) t.test(x, alternative="greater")$p.value)
# combining the p-values of one-sample t-test:
addCLT(unlist(lapply(l1, FUN=function(x)
t.test(x, alternative="greater")$p.value)))
#Bi-level meta-analysis with one-sample right-tailed t-test
bilevelAnalysisClassic(x=l1, func=t.test, alternative="greater")
# two-sample left-tailed t-test
lapply(seq(l1), FUN=function(i,l1,l0)
t.test(l1[[i]], l0[[i]], alternative="greater")$p.value, l1, l0)
# combining the p-values of one-sample t-test:
addCLT(unlist(lapply(seq(l1), FUN=function(i,l1,l0)
t.test(l1[[i]], l0[[i]], alternative="greater")$p.value, l1, l0)))
#Bi-level meta-analysis with two-sample right-tailed t-test
bilevelAnalysisClassic(x=l1, y=l0, func=t.test, alternative="greater")
#Bi-level meta-analysis with two-sample left-tailed t-test
bilevelAnalysisClassic(x=l1, y=l0, func=t.test, alternative="less")
###################################################
### code chunk number 4: BLMA.Rnw:232-253
###################################################
library(BLMA)
# load KEGG pathways and create genesets
x=loadKEGGPathways()
gslist <- lapply(x$kpg,FUN=function(y){return (nodes(y));})
gs.names <- x$kpn[names(gslist)]
# load the 4 AML datasets
dataSets <- c("GSE17054", "GSE57194", "GSE33223", "GSE42140")
data(list=dataSets, package="BLMA")
# prepare dataList and groupList
names(dataSets) <- dataSets
dataList <- lapply(dataSets, function(dataset) get(paste0("data_", dataset)))
groupList <- lapply(dataSets, function(dataset) get(paste0("group_", dataset)))
# perform bi-level meta-analysis in conjunction with ORA
system.time(ORAComb <- bilevelAnalysisGeneset(gslist, gs.names, dataList,
groupList, enrichment = "ORA"))
#print the results
options(digits=2)
head(ORAComb[, c("Name", "pBLMA", "pBLMA.fdr", "rBLMA")])
###################################################
### code chunk number 5: BLMA.Rnw:268-275
###################################################
# perform bi-level meta-analysis in conjunction with GSA
system.time(GSAComb <- bilevelAnalysisGeneset(gslist, gs.names, dataList,
groupList, enrichment = "GSA",
nperms=200, random.seed = 1))
#print the results
options(digits=2)
head(GSAComb[, c("Name", "pBLMA", "pBLMA.fdr", "rBLMA")])
###################################################
### code chunk number 6: BLMA.Rnw:288-294
###################################################
set.seed(1)
system.time(PADOGComb <- bilevelAnalysisGeneset(gslist, gs.names, dataList,
groupList, enrichment = "PADOG", NI=200))
#print the results
options(digits=2)
head(PADOGComb[, c("Name", "pBLMA", "pBLMA.fdr", "rBLMA")])
###################################################
### code chunk number 7: BLMA.Rnw:304-309
###################################################
x <- loadKEGGPathways()
system.time(IAComb <- bilevelAnalysisPathway(x$kpg, x$kpn, dataList, groupList))
#print the results
options(digits=2)
head(IAComb[, c("Name", "pBLMA", "pBLMA.fdr", "rBLMA")])
###################################################
### code chunk number 8: BLMA.Rnw:337-355
###################################################
#perform intra-experiment analysis of the dataset GSE33223 using addCLT
library(BLMA)
data(GSE33223)
system.time(X <- intraAnalysisGene(data_GSE33223, group_GSE33223))
X <- X[order(X$pIntra), ]
# top 10 genes
head(X)
# bottom 10 genes
tail(X)
#perform intra-experiment analysis of GSE33223 using Fisher's method
system.time(Y <- intraAnalysisGene(data_GSE33223, group_GSE33223,
metaMethod=fisherMethod))
Y = Y[order(Y$pIntra), ]
# top 10 genes
head(Y)
# bottom 10 genes
tail(Y)
###################################################
### code chunk number 9: BLMA.Rnw:367-373
###################################################
system.time(Z <- bilevelAnalysisGene(dataList = dataList, groupList = groupList))
# top 10 genes
head(Z)
# bottom 10 genes
tail(Z)
###################################################
### code chunk number 10: BLMA.Rnw:380-387
###################################################
allGenes <- Reduce(intersect, lapply(dataList, rownames))
system.time(geneStat <- getStatistics(allGenes, dataList = dataList, groupList = groupList))
# top 10 genes
head(Z)
# bottom 10 genes
tail(Z)
###################################################
### code chunk number 11: BLMA.Rnw:391-392
###################################################
?getStatistics
###################################################
### code chunk number 12: BLMA.Rnw:396-433
###################################################
library(ROntoTools)
# get gene network
kpg <- loadKEGGPathways()$kpg
# get gene network name
kpn <- loadKEGGPathways()$kpn
# get geneset
gslist <- lapply(kpg,function(y) nodes(y))
# get differential expressed genes
DEGenes.Left <- rownames(geneStat)[geneStat$pLeft < 0.05 & geneStat$ES.pLeft < 0.05]
DEGenes.Right <- rownames(geneStat)[geneStat$pRight < 0.05 & geneStat$ES.pRight < 0.05]
DEGenes <- union(DEGenes.Left, DEGenes.Right)
# perform pathway analysis with ORA
oraRes <- lapply(gslist, function(gs){
pORACalc(geneSet = gs, DEGenes = DEGenes, measuredGenes = rownames(geneStat))
})
oraRes <- data.frame(p.value = unlist(oraRes), pathway = names(oraRes))
rownames(oraRes) <- kpn[rownames(oraRes)]
# print results
print(head(oraRes))
# perfrom pathway analysis with Pathway-Express from ROntoTools
ES <- geneStat[DEGenes, "ES"]
names(ES) <- DEGenes
peRes = pe(x = ES, graphs = kpg, ref = allGenes, nboot = 1000, seed=1, verbose = F)
peRes.Summary <- Summary(peRes, comb.pv.func = fisherMethod)
peRes.Summary[, ncol(peRes.Summary) + 1] <- rownames(peRes.Summary)
rownames(peRes.Summary) <- kpn[rownames(peRes.Summary)]
colnames(peRes.Summary)[ncol(peRes.Summary)] = "pathway"
# print results
print(head(peRes.Summary))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.