Nothing
#' @title Fisher's method for meta-analysis
#' @description Combine independent p-values using the minus log product
#'
#' @param x is an array of independent p-values
#'
#' @details
#'
#' Considering a set of \emph{m} independent significance tests, the resulted
#' p-values are independent and uniformly distributed between \emph{0} and
#' \emph{1} under the null hypothesis. Fisher's method uses the minus
#' log product of the p-values as the summary statistic, which follows a
#' chi-square distribution with \emph{2m} degrees of freedom.
#' This chi-square distribution is used to calculate the combined p-value.
#'
#' @return
#'
#' combined p-value
#'
#' @author
#'
#' Tin Nguyen and Sorin Draghici
#'
#' @references
#'
#' [1] R. A. Fisher. Statistical methods for research workers.
#' Oliver & Boyd, Edinburgh, 1925.
#'
#' @seealso \code{\link{stoufferMethod}}, \code{\link{addCLT}}
#'
#' @examples
#'
#' x <- rep(0,10)
#' fisherMethod(x)
#'
#' x <- runif(10)
#' fisherMethod(x)
#'
#' @import stats
#' @export
fisherMethod <- function(x) {
if(sum(is.na(x))>0) NA
else pchisq(-2 * sum(log(x)), df=2*length(x), lower=FALSE)
}
#' @title Stouffer's method for meta-analysis
#' @description Combine independent studies using the sum of p-values
#' transformed into standard normal variables
#'
#' @param x is an array of independent p-values
#'
#' @details
#'
#' Considering a set of \emph{m} independent significance tests, the resulted
#' p-values are independent and uniformly distributed between \emph{0} and
#' \emph{1} under the null hypothesis. Stouffer's method is similar to
#' Fisher's method (\link{fisherMethod}), with the difference is that it
#' uses the sum of p-values transformed into standard normal variables
#' instead of the log product.
#'
#' @return
#'
#' combined p-value
#'
#' @author
#'
#' Tin Nguyen and Sorin Draghici
#'
#' @references
#'
#' [1] S. Stouffer, E. Suchman, L. DeVinney, S. Star, and R. M. Williams.
#' The American Soldier: Adjustment during army life, volume 1.
#' Princeton University Press, Princeton, 1949.
#'
#' @seealso \code{\link{fisherMethod}}, \code{\link{addCLT}}
#'
#' @examples
#'
#' x <- rep(0,10)
#' stoufferMethod(x)
#'
#' x <- runif(10)
#' stoufferMethod(x)
#'
#' @import stats
#' @export
stoufferMethod <- function(x) {
if(sum(is.na(x))>0) NA
else pnorm(sum(qnorm(x)) / sqrt(length(x)))
}
#x is a vector of p-values
IrwinHallDensity <- function(x) {
n <- length(x)
s <- sum(x)
1/factorial(n-1) * sum(sapply(0:floor(s),
function(k) (-1)^k * choose(n,k) * (s-k)^(n-1)))
}
#x is a vector of p-values
IrwinHallCumulative <- function(x) {
n <- length(x)
s <- sum(x)
1/factorial(n) * sum(sapply(0:floor(s),
function(k) (-1)^k * choose(n,k) * (s-k)^(n)))
}
additiveMethod <- function(x) {
#x is a vector of p-values
n <- length(x)
if (n <= 20) {
IrwinHallCumulative(x)
} else {
pnorm(sum(x),n/2,sqrt(n/12),lower=TRUE)
}
}
#x is a vector of p-values
averageDensity <- function(x) {
n <- length(x)
a <- mean(x)
n/factorial(n-1) * sum(sapply(0:floor(n*a),
function(k) (-1)^k * choose(n,k) * (n*a-k)^(n-1)))
}
#x is a vector of p-values
averageCumulative <- function(x) {
n <- length(x)
a <- mean(x)
1/factorial(n) * sum(sapply(0:floor(n*a),
function(k) (-1)^k * choose(n,k) * (n*a-k)^(n)))
}
#' @title The additive method for meta-analysis
#' @description Combine independent studies using the average of p-values
#'
#' @param x is an array of independent p-values
#'
#' @details
#'
#' This method is based on the fact that sum of independent uniform variables
#' follow the Irwin-Hall distribution [1a,1b]. When the number of p-values
#' is small (\emph{n<20}), the distribution of the average of p-values can
#' be calculated using a linear transformation of the Irwin-Hall distribution.
#' When \emph{n} is large, the distribution is approximated using the
#' Central Limit Theorem to avoid underflow/overflow problems [2,3,4,5].
#'
#' @return
#'
#' combined p-value
#'
#' @author
#'
#' Tin Nguyen and Sorin Draghici
#'
#' @references
#'
#' [1a] P. Hall. The distribution of means for samples of size n drawn from a
#' population in which the variate takes values between 0 and 1, all such
#' values being equally probable. Biometrika, 19(3-4):240-244, 1927.
#'
#' [1b] J. O. Irwin. On the frequency distribution of the means of samples
#' from a population having any law of frequency with finite moments, with
#' special reference to Pearson's Type II. Biometrika, 19(3-4):225-239, 1927.
#'
#' [2] T. Nguyen, R. Tagett, M. Donato, C. Mitrea, and S. Draghici. A novel
#' bi-level meta-analysis approach -- applied to biological pathway analysis.
#' Bioinformatics, 32(3):409-416, 2016.
#'
#' [3] T. Nguyen, C. Mitrea, R. Tagett, and S. Draghici. DANUBE: Data-driven
#' meta-ANalysis using UnBiased Empirical distributions -- applied to
#' biological pathway analysis. Proceedings of the IEEE, PP(99):1-20, 2016.
#'
#' [4] T. Nguyen, D. Diaz, R. Tagett, and S. Draghici. Overcoming the
#' matched-sample bottleneck: an orthogonal approach to integrate omic data.
#' Scientific Reports, 6:29251, 2016.
#'
#' [5] T. Nguyen, D. Diaz, and S. Draghici. TOMAS: A novel TOpology-aware
#' Meta-Analysis approach applied to System biology. In Proceedings of the
#' 7th ACM International Conference on Bioin- formatics, Computational Biology,
#' and Health Informatics, pages 13-22. ACM, 2016.
#'
#' @seealso \code{\link{fisherMethod}}, \code{\link{stoufferMethod}}
#'
#' @examples
#'
#' x <- rep(0,10)
#' addCLT(x)
#'
#' x <- runif(10)
#' addCLT(x)
#'
#' @import stats
#' @export
addCLT <- function(x) {
if(sum(is.na(x))>0) NA
else {
n <- length(x)
if (n <= 20) {
averageCumulative(x)
} else {
pnorm(mean(x),1/2,sqrt(1/(12*n)),lower=TRUE)
}
}
}
splitS <- function(x, splitSize=5) {
g <- ceiling(seq(x)/splitSize)
g[g==floor(length(x)/splitSize)+1] <- floor(length(x)/splitSize)
split(x, g)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.