Nothing
`regress` <-
function (object, contrast, method = c("limma", "regression", "permutation"),
adj = "none", permute.time = 1000)
{
method <- match.arg(method)
fit <- lmFit(object, getDesign(contrast))
fit2 <- contrasts.fit(fit, getContrast(contrast))
if (method == "regression" | method == "permutation") {
fit2$t <- fit2$coef / fit2$stdev.unscaled / fit2$sigma
F.stat <- classifyTestsF(fit2, fstat.only = TRUE, df=fit2$df.residual)
fit2$F <- as.vector(F.stat)
df1 <- attr(F.stat, "df1")
df2 <- attr(F.stat, "df2")
fit2$F.p.value <- pf(fit2$F, df1, df2, lower.tail = FALSE)
if (method == "permutation"){
f <- fit2$F
p <- matrix(NA, nrow = length(f), ncol = (permute.time - 1))
for (i in 1:(permute.time - 1)) {
p[, i] <- permute.1(object, design, contrast, f)
}
p.1 <- rep(1, length(f))
p <- cbind(p, p.1)
count <- apply(p, 1, sum)
fit2$F.p.value <- count/permute.time
}
} else if (method == "limma") {
fit2 <- eBayes(fit2)
}
if (adj == "none")
adj.P.Value <- p.adjust(fit2$F.p.value, method = "fdr")
else
adj.P.Value <- p.adjust(fit2$F.p.value, method = adj)
##result<- list(as.vector(unlist(fit2$genes)), as.list(as.data.frame(fit2$coefficients)),
## fit2$F, fit2$F.p.value, adj.P.Value, design, contrast, method, adj)
FC <- as.list(as.data.frame(fit2$coefficients))
Log2Ratio.name <- character(ncol(getContrast(contrast)))
for (i in 1:ncol(getContrast(contrast))) {
Log2Ratio.name[i] <- paste("Log2Ratio", i, sep = ".")
}
names(FC) <- Log2Ratio.name
result <- new("regressResult", ID = as.vector(unlist(rownames(fit2))),
foldChange = FC, FValue = fit2$F, pValue = fit2$F.p.value,
adjPVal = adj.P.Value, contrast =contrast,
regressionMethod = method, adjustment = adj, annotation=object@annotation,
normalizationMethod = object@experimentData@preprocessing,
filterMethod = object@experimentData@other)
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.