Description Usage Arguments Value References See Also Examples
Statistical analysis and feature selection in a repeated double
cross-validation frame based on the partial least squares
(PLS) or random forest (RF) analyses using an algorithm
for multivariate modelling with minimally biased variable
selection (MUVR) from the MUVR
package. The function
rdCV_PLS_RF_ML
allows the multilevel comparison,
especially useful in crossover or longitudinal studies
(2 timepoints) considering the same individual (it
requires 2 samples of the same observation).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
nmr_peak_table |
an AlpsNMR integration object (2 classes) |
label |
the name of the variable to test (e.g. "Timepoint") |
a MUVR model containing selection parameters, validation and fitness
Shi,L. et al. (2018) Variable selection and validation in multivariate modelling. Bioinformatics.
Other nmr_dataset_1D functions:
[.nmr_dataset_1D()
,
computes_peak_width_ppm()
,
file_lister()
,
files_to_rDolphin()
,
format.nmr_dataset_1D()
,
is.nmr_dataset_1D()
,
load_and_save_functions
,
new_nmr_dataset_1D()
,
nmr_align_find_ref()
,
nmr_baseline_removal()
,
nmr_baseline_threshold()
,
nmr_exclude_region()
,
nmr_integrate_regions()
,
nmr_interpolate_1D()
,
nmr_meta_add()
,
nmr_meta_export()
,
nmr_meta_get_column()
,
nmr_meta_get()
,
nmr_normalize()
,
nmr_pca_build_model()
,
nmr_pca_outliers_filter()
,
nmr_pca_outliers_plot()
,
nmr_pca_outliers_robust()
,
nmr_pca_outliers()
,
nmr_ppm_resolution()
,
plot.nmr_dataset_1D()
,
plot_webgl()
,
print.nmr_dataset_1D()
,
rdCV_PLS_RF()
,
save_files_to_rDolphin()
,
to_ChemoSpec()
,
validate_nmr_dataset_peak_table()
,
validate_nmr_dataset()
1 2 | message("MUVR is not compatible with Bioconductor,
use bp_kfold_VIP_analysis method instead")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.