permutation_test_plot: Permutation test plot

Description Usage Arguments Value Examples

Description

Plot permutation test using actual model and permutated models

Usage

1
2
3
4
5
6
7
8
9
permutation_test_plot(
  nmr_data_analysis_model,
  permMatrix,
  xlab = "AUCs",
  xlim,
  ylim = NULL,
  breaks = "Sturges",
  main = "Permutation test"
)

Arguments

nmr_data_analysis_model

A nmr_data_analysis_model

permMatrix

A permutation fitness outcome from permutation_test_model

xlab

optional xlabel

xlim

optional x-range

ylim

otional y-range

breaks

optional custom histogram breaks (defaults to 'sturges')

main

optional plot title (or TRUE for autoname)

Value

A plot with the comparison between the actual model versus the permuted models

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Data analysis for a table of integrated peaks

## Generate an artificial nmr_dataset_peak_table:
### Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
    NMRExperiment = as.character(1:num_samples),
    Condition = rep(c("A", "B"), times = num_samples/2),
    stringsAsFactors = FALSE
)

### The matrix with peaks
peak_means <- runif(n = num_peaks, min = 300, max = 600)
peak_sd <- runif(n = num_peaks, min = 30, max = 60)
peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
                                            mu = peak_means, sd = peak_sd)
colnames(peak_matrix) <- paste0("Peak", 1:num_peaks)

## Artificial differences depending on the condition:
peak_matrix[metadata$Condition == "A", "Peak2"] <- 
    peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <- 
    peak_matrix[metadata$Condition == "A", "Peak6"] - 60
    
### The nmr_dataset_peak_table
peak_table <- new_nmr_dataset_peak_table(
    peak_table = peak_matrix,
    metadata = list(external = metadata)
)

methodology <- plsda_auroc_vip_method(ncomp = 3)
model <- nmr_data_analysis(
    peak_table,
    y_column = "Condition",
    identity_column = NULL,
    external_val = list(iterations = 3, test_size = 0.25),
    internal_val = list(iterations = 3, test_size = 0.25),
    data_analysis_method = methodology
)

p = permutation_test_model(peak_table,
                           y_column = "Condition",
                           identity_column = NULL,
                           external_val = list(iterations = 3, test_size = 0.25),
                           internal_val = list(iterations = 3, test_size = 0.25),
                           data_analysis_method = methodology, 
                           nPerm = 10)
                           
permutation_test_plot(model, p)

AlpsNMR documentation built on April 1, 2021, 6:02 p.m.