Nothing
### R code from vignette source 'ASGSCA.Rnw'
###################################################
### code chunk number 1: ASGSCA.Rnw:200-227
###################################################
library(ASGSCA)
data("QCAHS")
#Names of all the observed variables: the SNPs then the traits
colnames(QCAHS)
#Extract the variables of interest
QCAHS1=data.frame(QCAHS$TaqIB,QCAHS$HindIII,QCAHS$G1302A,QCAHS$G1564A,QCAHS$G308A,QCAHS$G238A,
QCAHS$HDL,QCAHS$LDL,QCAHS$APOB,QCAHS$TG,QCAHS$Glucose,QCAHS$Insulin)
#Names of the observed variables used in this example
ObservedVar=c("TaqIB","HindIII","G1302A","G1564A","G308A","G238A","HDL","LDL","APOB",
"TG","Glucose","Insulin")
colnames(QCAHS1)=ObservedVar
#Define the vector of the latent variables names
LatentVar=c("CETP","LPL","PGC","TNFa","Lipid metabolism","Energy metabolism")
#Construction of the matrices W0 and B0 describing the model illustrated in Figure 2.
W0=matrix(rep(0,12*6),nrow=12,ncol=6, dimnames=list(ObservedVar,LatentVar))
W0[1,1]=W0[2,2]=W0[3:4,3]=W0[5:6,4]=W0[7:10,5]=W0[8:12,6]=1
B0=matrix(rep(0,6*6),nrow=6,ncol=6, dimnames=list(LatentVar,LatentVar))
B0[1:3,5]=B0[3:4,6]=1
W0
B0
###################################################
### code chunk number 2: ASGSCA.Rnw:235-236
###################################################
GSCA(QCAHS1,W0, B0,latent.names=LatentVar, estim=TRUE,path.test=FALSE,path=NULL,nperm=1000)
###################################################
### code chunk number 3: ASGSCA.Rnw:256-258
###################################################
set.seed(2)
GSCA(QCAHS1,W0, B0,latent.names=LatentVar, estim=TRUE,path.test=TRUE,path=NULL,nperm=1000)
###################################################
### code chunk number 4: ASGSCA.Rnw:269-271
###################################################
set.seed(2)
GSCA(QCAHS1,W0, B0,latent.names=LatentVar,estim=FALSE,path.test=TRUE,path=NULL,nperm=1000)
###################################################
### code chunk number 5: ASGSCA.Rnw:280-286
###################################################
set.seed(2)
path0=matrix(c(2,3,5,6),ncol=2)
path0
GSCA(QCAHS1,W0, B0,latent.names=LatentVar, estim=FALSE,path.test=TRUE,path=path0,
nperm=1000)
###################################################
### code chunk number 6: ASGSCA.Rnw:297-309
###################################################
ObservedVar=colnames(QCAHS)
ObservedVar
#Define the vector of the latent variables names
LatentVar=c("CETP","APOC3","ABCA1","FABP-2","APOA1","APOE","HL","LPL","MTP","PON1","PON2","PCSK9",
"PGC","ADIPO","PPARg2","TNFa","eNOS","a23AR","b1AR","b2AR","b3AR","ACE","AGT","AGTR1","LEPR",
"Lipid metabolism", "Energy metabolism","BP control")
#The matrices W0 and B0 describing the model illustrated in Figure 2.
data(W0); data(B0)
dim(W0)
dim(B0)
###################################################
### code chunk number 7: ASGSCA.Rnw:326-336
###################################################
#set.seed(4)
#ResQCAHS=GSCA(QCAHS,W0, B0,latent.names=LatentVar, estim=TRUE,path.test=TRUE,path=NULL,nperm=1000)
data("ResQCAHS")
indices <- which(ResQCAHS$pvalues<0.05, arr.ind=TRUE)
ind.row=indices[,1] ; ind.col=indices[,2]
Significant<- matrix(rep(0,nrow(indices)*3),ncol=3);colnames(Significant)=c("Gene", "Pathway", "pval")
Significant[,1] <- rownames(ResQCAHS$pvalues)[ind.row]
Significant[,2] <- colnames(ResQCAHS$pvalues)[ind.col]
Significant[,3]<-ResQCAHS$pvalues[indices]
Significant
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.