Nothing
#- $Id: hclusterPlot.R,v 1.1.1.1 2006/06/06 22:06:37 sunya Exp $
#- Perform hierarchical clustering and produce heatmap on expression matrix
"hclusterPlot" <-
function(expr, title = "", dist = "Euclidean") {
if(dim(expr)[1] < 2) {
print("There is only one probe. No need for clustering")
return()
}
if(dim(expr)[2] < 2) {
print("Only one sample is available. No need for clustering")
return()
}
n <- 255 #- Use 255
# convert to rgb
low <- col2rgb("green")
mid <- col2rgb("black")
high <- col2rgb("red")
# determine length of each component
lower <- floor(n/2)
upper <- n - lower
lowcolor <- c(
seq(low[1,1], mid [1,1], length=lower),
seq(mid[1,1], high[1,1], length=upper)
)/n
highcolor <- c(
seq(low[3,1], mid [3,1], length=lower),
seq(mid[3,1], high[3,1], length=upper)
)/n
midcolor <- c(
seq(low[2,1], mid [2,1], length=lower),
seq(mid[2,1], high[2,1], length=upper)
)/n
hcolor <- rgb(lowcolor, midcolor, highcolor)
if(any(grep("cor", dist, ignore.case = TRUE)) > 0) {
hv = heatmap(expr, distfun = function(x) (as.dist(1-abs(cor(t(x), use = "complete.obs")))),
col = hcolor, main = paste(title, dist), margins = c(10,5),
cex.main = 0.5, cex.axis = 0.6, keep.dendro = TRUE)
}
else {
rv = as.dendrogram(hclust(as.dist(1-cor(t(expr), use = "complete.obs"))))
hv = heatmap(expr, Rowv = rv, col = hcolor, main = paste(title, dist), margins = c(10,5),
cex.main = 0.5, cex.axis = 0.6, keep.dendro = TRUE)
}
invisible(hv)
}
###################################################################
#- $Log: hclusterPlot.R,v $
#- Revision 1.1.1.1 2006/06/06 22:06:37 sunya
#- ABarray project converted from ab1700 project
#-
#- Revision 1.7 2006/03/21 23:00:17 sunya
#- Improved memory usage.
#- Control probes in the exported control signal value file are now sorted.
#- Improved handling of NA values. The statistical analysis will ignore NA.
#- If there is only one member of a subgroup, this subgroup will not appear
#- in t test.
#-
#- Revision 1.6 2006/03/20 23:00:16 sunya
#- Missing values (NA) are kept even after imputation. But most downstream
#- analysis will remove these NA values.
#- The hierarchical clustering probe list and expression values are now
#- exported into csv file.
#- Changed file naming convention. QC plot will begin QC_, and statistical
#- analysis plot will begin ST_ in the figures.
#- Values for control probes are saved into csv file.
#-
#- Revision 1.5 2006/03/14 19:48:30 sunya
#- Changed icp (internal control probe) QC plots.
#- Added function for icp -> icpPlot
#- ANOVA analysis now performs probe filtering, but no FDR is calculated.
#- hclusterPlot now calculate correlation coefficient for probes, previously
#- it used Euclidian distance. The distance between arrays is still Euclidean.
#-
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.