#' Simple statistical analysis of metagenomic profiles
#'
#' Perform simple statistical analysis of metagenomic profiles. This function
#' is a wrapper of `run_test_two_groups` and `run_test_multiple_groups`.
#'
#' @param ps a [`phyloseq::phyloseq-class`] object
#' @param group character, the variable to set the group
#' @param taxa_rank character to specify taxonomic rank to perform
#' differential analysis on. Should be one of
#' `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by
#' the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or
#' "none" means perform differential analysis on the original taxa
#' (`taxa_names(phyloseq)`, e.g., OTU or ASV).
#' @param transform character, the methods used to transform the microbial
#' abundance. See [`transform_abundances()`] for more details. The
#' options include:
#' * "identity", return the original data without any transformation
#' (default).
#' * "log10", the transformation is `log10(object)`, and if the data contains
#' zeros the transformation is `log10(1 + object)`.
#' * "log10p", the transformation is `log10(1 + object)`.
#' @param norm the methods used to normalize the microbial abundance data. See
#' [`normalize()`] for more details.
#' Options include:
#' * "none": do not normalize.
#' * "rarefy": random subsampling counts to the smallest library size in the
#' data set.
#' * "TSS": total sum scaling, also referred to as "relative abundance", the
#' abundances were normalized by dividing the corresponding sample library
#' size.
#' * "TMM": trimmed mean of m-values. First, a sample is chosen as reference.
#' The scaling factor is then derived using a weighted trimmed mean over the
#' differences of the log-transformed gene-count fold-change between the
#' sample and the reference.
#' * "RLE", relative log expression, RLE uses a pseudo-reference calculated
#' using the geometric mean of the gene-specific abundances over all
#' samples. The scaling factors are then calculated as the median of the
#' gene counts ratios between the samples and the reference.
#' * "CSS": cumulative sum scaling, calculates scaling factors as the
#' cumulative sum of gene abundances up to a data-derived threshold.
#' * "CLR": centered log-ratio normalization.
#' * "CPM": pre-sample normalization of the sum of the values to 1e+06.
#' @param norm_para arguments passed to specific normalization methods
#' @param method test method, options include: "welch.test", "t.test" and
#' "white.test" for two groups comparison, "anova"and "kruskal" for multiple
#' groups comparison.
#' @param p_adjust method for multiple test correction, default `none`,
#' for more details see [stats::p.adjust].
#' @param pvalue_cutoff numeric, p value cutoff, default 0.05
#' @param diff_mean_cutoff,ratio_cutoff only used for two groups comparison,
#' cutoff of different means and ratios, default `NULL` which means no effect
#' size filter.
#' @param eta_squared_cutoff only used for multiple groups comparison, numeric,
#' cutoff of effect size (eta squared) default `NULL` which means no effect
#' size filter.
#' @param conf_level only used for two groups comparison, numeric, confidence
#' level of interval.
#' @param nperm integer, only used for two groups comparison, number of
#' permutations for white non parametric t test estimation
#' @param ... only used for two groups comparison, extra arguments passed to
#' [`t.test()`] or [`fisher.test()`].
#' @return a [`microbiomeMarker-class`] object.
#' @seealso [`run_test_two_groups()`],[`run_test_multiple_groups()`]
#' @export
#' @examples
#' data(enterotypes_arumugam)
#' ps <- phyloseq::subset_samples(
#' enterotypes_arumugam,
#' Enterotype %in% c("Enterotype 3", "Enterotype 2")
#' )
#' run_simple_stat(ps, group = "Enterotype")
run_simple_stat <- function(ps,
group,
taxa_rank = "all",
transform = c("identity", "log10", "log10p"),
norm = "TSS",
norm_para = list(),
method = c(
"welch.test", "t.test", "white.test",
"anova", "kruskal"
),
p_adjust = c(
"none", "fdr", "bonferroni", "holm",
"hochberg", "hommel", "BH", "BY"
),
pvalue_cutoff = 0.05,
diff_mean_cutoff = NULL,
ratio_cutoff = NULL,
eta_squared_cutoff = NULL,
conf_level = 0.95,
nperm = 1000,
...) {
stopifnot(inherits(ps, "phyloseq"))
transform <- match.arg(transform, c("identity", "log10", "log10p"))
method <- match.arg(
method,
c("welch.test", "t.test", "white.test", "anova", "kruskal")
)
p_adjust <- match.arg(
p_adjust,
c(
"none", "fdr", "bonferroni", "holm",
"hochberg", "hommel", "BH", "BY"
)
)
# group
sample_meta <- sample_data(ps)
if (!group %in% names(sample_meta)) {
stop("`group` must in the field of sample meta data", call. = FALSE)
}
groups <- sample_meta[[group]]
n_group <- length(unique(groups))
if (n_group == 1) {
stop("at least two groups required", call. = FALSE)
}
if (n_group == 2) {
if (!method %in% c("welch.test", "t.test", "white.test")) {
stop(
"There are two groups here, please select welch.test, t.test, ",
"or white.test for two groups comparison",
call. = FALSE
)
}
if (!missing(eta_squared_cutoff)) {
warning(
"`eta_squared_cutoff` is ignored since it is only used for ",
"multiple groups comparison",
call. = FALSE
)
}
res <- run_test_two_groups(
ps = ps,
group = group,
taxa_rank = taxa_rank,
transform = transform,
norm = norm,
norm_para = norm_para,
method = method,
p_adjust = p_adjust,
pvalue_cutoff = pvalue_cutoff,
diff_mean_cutoff = diff_mean_cutoff,
ratio_cutoff = ratio_cutoff,
conf_level = conf_level,
nperm = nperm,
...
)
} else {
if (!method %in% c("anova", "kruskal")) {
stop(
"There are more than two groups, please select anova or ",
"kruskal for multiple groups comparison",
call. = FALSE
)
}
if (!missing(diff_mean_cutoff)) {
warning(
"`diff_mean_cutoff` only worked for two groups comparison",
call. = FALSE
)
}
if (!missing(ratio_cutoff)) {
warning(
"`ratio_cutoff` only worked for two groups comparison",
call. = FALSE
)
}
if (!missing(nperm)) {
warning(
"`nperm` only worked for two groups comparison",
call. = FALSE
)
}
if (!missing(conf_level)) {
warning(
"`conf_level` only worked for two groups comparison",
call. = FALSE
)
}
res <- run_test_multiple_groups(
ps = ps,
group = group,
taxa_rank = taxa_rank,
transform = transform,
norm = norm,
norm_para = norm_para,
method = method,
p_adjust = p_adjust,
pvalue_cutoff = pvalue_cutoff,
effect_size_cutoff = eta_squared_cutoff
)
}
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.