knitr::opts_chunk$set(echo = TRUE,message = FALSE,warning = FALSE)
library(enrichTF) library(rtracklayer) library(ggplot2) library(ggpubr) objname <- load("PrevSteps.Rdata")
stepUnzipAndMergeBed <-prevSteps[["UnzipAndMergeBed"]] bedInput <- input(stepUnzipAndMergeBed)$bedInput bedOutput <- output(stepUnzipAndMergeBed)$bedOutput genome <- "hg19" #property(stepUnzipAndMergeBed)[["genome"]] outputGrange <- import.bed(bedOutput)
Total r length(outputGrange)
regions from r length(bedInput)
BED file(s) of r genome
.
knitr::kable(data.frame(Directory=bedInput,Regions=sapply(bedInput, function(x){length(readLines(x))})))
Region sizes distribution
ggplot(data.frame(RegionSize = width(outputGrange)),aes(x=RegionSize)) + geom_histogram(binwidth = 1) + geom_vline(xintercept = median(width(outputGrange))) + annotate("text", x = median(width(outputGrange)), y = 50, color="black",size=2 ,label = paste("median:",median(width(outputGrange)))) + xlab("Region Size") + ylab("Counts")
Region chromesome distribution
outputdf <- as.data.frame(outputGrange) library(ggplot2) ggplot(outputdf ,aes(seqnames)) + geom_bar() + xlab("Chromosome") + ylab("Counts")
stepTissueOpennessSpecificity <-prevSteps[["TissueOpennessSpecificity"]]
Top 20 open Tissues / Cell Types are list below.
sampleTxtFile <- output(stepTissueOpennessSpecificity)$sampleTxtOutput sampleTxt <- read.table(sampleTxtFile, header = TRUE, sep = "\t")
Complete table can be accessed from the directory of TissueOpennessSpecificity: r sampleTxtFile
showSampleTxt <- sampleTxt[1:20,] rownames(showSampleTxt) <- NULL colnames(showSampleTxt) <- c("Index", "Tissue/Cell Type", "ENCODE", "Median") knitr::kable(showSampleTxt)
Top 8 open Tissues / Cell Types are list below.
All figures can be accessed from the directory of TissueOpennessSpecificity: r output(stepTissueOpennessSpecificity)$distPdfOutput
bedOutput <- read.table(output(stepTissueOpennessSpecificity)$bedOutput,sep = "\t", header = FALSE) openValue <- bedOutput[,4:ncol(bedOutput)] idx <- sampleTxt[1:8,1] spname <- as.character(sampleTxt[1:8,2]) names(spname) <- idx plt<-lapply(idx, function(x){ v <- openValue[[x]] ggplot(data.frame(v=v),aes(x=v)) + geom_histogram(binwidth = 0.1) + geom_vline(xintercept = median(v)) + annotate("text", x = median(v), y = 50, color="white", size=2 ,label = paste("median:", median(v))) + xlab(spname[as.character(x)]) }) plt[["nrow"]] <- ceiling(length(idx)/2) plt[["ncol"]] <- 2 do.call(what = ggarrange,args = plt)
Heatmap of region and tissue
load(output(stepTissueOpennessSpecificity)$heatmapDataOutput) library(heatmap3) p<-pdf("heatmap.png") heatmap3(heatmapData, useRaster = TRUE) dev.off()
file.copy(from = output(stepTissueOpennessSpecificity)$distPdfOutput, to = "heatmap.pdf")
stepTissueOpennessConserve <-prevSteps[["TissueOpennessConserve"]] conserve <- read.table(output(stepTissueOpennessConserve)[["bedOutput"]],header = FALSE,sep = "\t")
ggplot(conserve, aes(V5)) + geom_histogram(binwidth = 0.01) + xlab("Conserve") + ylab("Counts")
Target gene average score and count are shown in figure below.
The original region - target gene BED file can be downloaded here
stepRegionConnectTargetGene <-prevSteps[["RegionConnectTargetGene"]] tg<-read.table(output(stepRegionConnectTargetGene)$outputForegroundBed,header=FALSE,sep = "\t") genecounts <- table(tg$V6) avg<-lapply(names(genecounts), function(x){ return(mean(tg[tg$V6==x,5])) }) df <- data.frame(score = unlist(avg), count = as.numeric(genecounts), gene = names(genecounts)) ggplot(df) + geom_text(aes(x=count,y=score,label=gene)) + xlab("Target gene count") + ylab("Average score")
stepFindMotifsInRegions <- prevSteps[["FindMotifsInRegions"]] motifcallingresult <- output(stepFindMotifsInRegions)[["outputRegionMotifBed"]]
motif calling result for regions can be access via: r motifcallingresult
Top 20 TF is shown in table below.
Click here to download full txt table.
stepTFsEnrichInRegions <- prevSteps[["TFsEnrichInRegions"]] peca<-read.table(output(stepTFsEnrichInRegions)$outputTFsEnrichTxt,header=TRUE,sep = "\t") peca[,2:5] <- format(peca[,2:5],scientific=TRUE) knitr::kable(peca[1:20,])
stepGeneOntology <- prevSteps[["GeneOntology"]] df <- read.table(output(stepGeneOntology)$outputTxt,sep="\t",header = TRUE) knitr::kable(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.