#' Constructor for class adaptmle
#'
#' @return class \code{adaptmle} object, sub-classed from SummarizedExperiment.
#'
#' @importFrom methods setClass new
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
#' @importClassesFrom S4Vectors Vector Annotated
#'
#' @export .adaptmle
#' @exportClass adapTMLE
#'
#' @examples
#' library(SummarizedExperiment)
#' library(airway)
#' data(airway)
#'
#' example_adaptmle_class <- function(se, n_top = 20, n_fold = 10) {
#' call <- match.call(expand.dots = TRUE)
#' adaptmle <- .adaptmle(
#' SummarizedExperiment::SummarizedExperiment(
#' assays = SummarizedExperiment::assay(se),
#' colData = SummarizedExperiment::colData(se)
#' ),
#' call = call,
#' folds = list(), # folds (from origami)
#' plot_ingredients = list(), # top_colname
#' diff_exp = as.numeric(rep(NaN, n_top)), # DE
#' p_value = as.numeric(rep(NaN, n_top)), # p_value
#' q_value = as.numeric(rep(NaN, n_top)), # q_value
#' q_sig = as.numeric(rep(NaN, n_top)), # significant_q
#' q_sig_names = list(), # top_colname_significant_q
#' rank_mean = as.numeric(rep(NaN, n_top * n_fold)), # mean_rank_top
#' prob_top = as.numeric(rep(NaN, n_top * n_fold)), # prob_in_top
#' top_index = as.numeric(rep(NaN, n_top * n_fold)) # top_index
#' )
#' return(adaptmle)
#' }
#'
#' example_class <- example_adaptmle_class(se = airway)
#
.adaptmle <- methods::setClass(
Class = "adapTMLE",
slots = list(
call = "call",
folds = "list", # folds (from origami)
plot_ingredients = "list", # top_colname
diff_exp = "numeric", # DE
p_value = "numeric", # p_value
q_value = "numeric", # q_value
q_sig = "numeric", # significant_q
q_sig_names = "list", # top_colname_significant_q
rank_mean = "numeric", # mean_rank_top
prob_top = "numeric", # prob_in_top
top_index = "numeric"
), # top_index
contains = "SummarizedExperiment"
)
#' Accessor for results of class adaptest
#'
#' Simple accessor function to extract and assign important statistical results
#' from the main function \code{adaptest}. INTERNAL USE ONLY.
#'
#' @param data_adapt_out S3 object of class \code{data_adapt} with analytic
#' results from the statistical routine, as produced by \code{adaptest}.
#' @param adaptmle_in S4 object of class{adapTMLE} into which analytic results
#' should be inserted for organizational and interfacing purposes.
#'
#' @return Called for side-effects (i.e., altering \code{adaptmle} objects).
#'
#' @keywords internal
#
get_results_adaptmle <- function(adaptmle_in, data_adapt_out) {
stopifnot(class(data_adapt_out) == "data_adapt" &&
class(adaptmle_in) == "adapTMLE")
adaptmle_in@folds <- data_adapt_out$folds # from origami
adaptmle_in@plot_ingredients <- data_adapt_out$top_colname
adaptmle_in@diff_exp <- data_adapt_out$DE
adaptmle_in@p_value <- data_adapt_out$p_value
adaptmle_in@q_value <- data_adapt_out$q_value
adaptmle_in@q_sig <- data_adapt_out$significant_q
adaptmle_in@q_sig_names <- data_adapt_out$top_colname_significant_q
adaptmle_in@rank_mean <- data_adapt_out$mean_rank_top
adaptmle_in@prob_top <- data_adapt_out$prob_in_top
adaptmle_in@top_index <- data_adapt_out$top_index
return(adaptmle_in)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.