knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
curatedMetagenomicData
Download the data as an ExpressionSet
list:
library(curatedMetagenomicData) esetlist <- list(taxa = ZellerG_2014.metaphlan_bugs_list.stool()[, 1:10], pathways = ZellerG_2014.pathabundance_relab.stool()) ## species and strain-level taxa only: esetlist$taxa <- esetlist$taxa[grep("s__", rownames(esetlist$taxa)), ] ## eliminate taxa-specific pathway contributions (only total pathway abundances): esetlist$pathways <- esetlist$pathways[grep("g__", rownames(esetlist$pathways), invert=TRUE), ]
Create the MultiAssayExperiment
:
library(MultiAssayExperiment) cmd <- MultiAssayExperiment(experiments=esetlist, colData=colData(as(esetlist[[2]], "SummarizedExperiment"))) cmd rownames(cmd)
library(omicade4) cmdsub <- cmd[, cmd$disease %in% c("adenoma", "CRC", "healthy"), ] ##Get rid of rows that are all zero: cmdsub <- cmdsub[lapply(assays(cmdsub), function(exper) rowSums(exper) > 0), ] mcoin <- mcia(assay(cmdsub)) plot(mcoin, phenovec=cmdsub$disease, sample.lab=FALSE)
Error, "system is computationally singular"
library(iClusterPlus) datasets = assay(cmdsub) datasets = lapply(datasets, t) iclus = iCluster(datasets=datasets, k=5, lambda=c(0.2, 0.2)) plotiCluster(fit=iclus, label=cmdsub$disease)
library(PMA) cmd2 <- mergeReplicates(intersectColumns(cmd)) ## ERROR: some columns have SD = 0 mycca <- PMA::CCA(x=t(assay(cmd2, 1)), z=t(assay(cmd2, 2))) mycca
library(made4) library(MCIA) # library(Rtopper) # gene set analysis
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.