#' Phenotypes class.
#'
#' Details about Phenotypes class.
#'
#' Class holding information about the samples
#'
#' @slot n number of samples
#' @slot proportionOutlying proportion of outlying or
#' erroneusly assigned samples. It is not uncommong that in
#' large-scale experiments up to ~5\% samples appear as outliers.
#' @slot originalPhenotypes character vector with original or intended
#' phenotype (group) assignment
#' @slot simulatedPhenotypes character vector with phenotype assigments
#' after pretending that some of the samples are actually outliers
#' @slot sampleNames character vector with sample names
#' @slot meanFoldChange numeric value controlling the applitude of average fold
#' of change between the conditions. Used as \code{sdlog} in
#' \code{rlnorm} function.
#' @slot pipettingAccuracy a parameter for generating sample systematic biases
#' @slot sampleBiases normalization scaling factors
#' @slot simulated logical indicated if the object has been simulated
#'
#' @examples
#' # 10 samples (5 controls + 5 cases)
#' # Note, the number of outlying samples is somewhat extreme - 50%.
#' # This is for demonstration purpose only.
#' ph <- Phenotypes(original=c('Ctrl', 'Ctrl', 'Ctrl', 'Ctrl', 'Ctrl',
#' 'Case', 'Case', 'Case', 'Case', 'Case'),
#' proportionOutlying=0.5)
#' ph <- simulate(ph, seed=123)
#' show(ph)
#'
#' @exportClass Phenotypes
#'
setClass(Class="Phenotypes",
representation(
n="integer",
proportionOutlying="numeric",
originalPhenotypes="character",
simulatedPhenotypes="character",
meanFoldChange="numeric",
pipettingAccuracy="numeric",
sampleBiases="numeric",
simulated="logical",
sampleNames="character")
)
# * checking for code/documentation mismatches ... WARNING
# S4 class codoc mismatches from documentation object 'Phenotypes-class':
# Slots for class 'Phenotypes'
# Code: n originalPhenotypes pipettingAccuracy proportionOutlying
# sampleBiases sampleNames simulated simulatedPhenotypes
# Docs: n proportionOutlying
#' Proteins class.
#'
#' Details about Proteins class.
#'
#' Class holding the information about the proteins and peptides
#'
#' @slot nProt number of proteins
#' @slot fdrPeptide FDR of peptide identifications
#' @slot fdrMatching FDR of peptide to spectrum or LC-MS feature matching
#' @slot propChanging proportion of proteins that are changed between the
#' different phenotype groups. At this point it is independent of
#' phenotype groups. It shoud, however, depend on phenotype.
#' @slot changingProtIdx index indicating which proteins are changing
#' @slot nPep number of peptides
#' @slot lambda parameter of Poisson distribution controlling the number of
#' peptides per protein during the simulation
#' @slot meanIoinizationIntensity a numeric value of mean peptide intensity
#' @slot noise measurement noise. So far one value for all. May be in the
#' future convert to signal/noise ratio.
#' @slot pepCounts integer vector with number of peptides per each protein
#' @slot protNames character vector with generated protein names
#' @slot pepNames character vector with generacted peptide names
#' @slot ionizationEff numeric vector with simulated ionization efficiencies
#' for the peptides
#' @slot missThreshAbsolute soft threshold in absolute intensity.
#' It has precedence over missThreshQuantile.
#' @slot missThreshQuantile quantile to determine soft threshold value.
#' @slot missThreshSharpness parameter controlling the sharpness of the
#' thresholding step function. The suggested interval for the
#' sharpness values is [2,100]. At 2 it approximates linear
#' (not necessarily the best setting). At 100 it is almost a
#' step-function. The suggested values are >5.
#' @slot features data.frame containing peptide and protein names
#'
#' @examples
#' pr <- Proteins(nProt=10)
#' pr <- simulate(pr)
#' show(pr)
#'
#' @exportClass Proteins
#'
setClass(Class="Proteins",
representation(
nProt="integer",
fdrPeptide="numeric",
fdrMatching="numeric",
propChanging="numeric",
changingProtIdx="logical",
nPep="integer",
lambda="numeric",
meanIoinizationIntensity="numeric",
noise="numeric",
pepCounts="integer",
protNames="character",
pepNames="character",
ionizationEff="numeric",
missThreshAbsolute="numeric",
missThreshQuantile="numeric",
missThreshSharpness="numeric",
features="data.frame")
)
#' Experiment class.
#'
#' Details about Experiment class.
#'
#' The central class of simMSnSet package
#'
#' @slot phenotypes Phenotypes and Samples
#' @slot proteins Peptides and Proteins
#' @slot simFinal simulated final intensities
#' @slot simNoise simulated noise of intensity measurements
#' @slot simMeans simulated actual fold of changes for each peptide/sample
#' @slot simSampleBiases simulated systematic biases due to pipetting errors
#' @slot simOutliers indexes of simulated outlying samples
#' @slot simMissing index of missing measurements
#' @slot simulated A logical flag indicating if the experiment has been simulated or not
#'
#' @examples
#' # 10 proteins measured across 6 samples (3 controls + 3 cases)
#' pr <- Proteins(nProt=10)
#' ph <- Phenotypes(originalPhenotypes=c('Control', 'Control', 'Control',
#' 'Case', 'Case', 'Case'))
#' ex <- Experiment(pr, ph)
#' ex <- simulate(ex)
#' image(ex)
#'
#' @exportClass Experiment
#' @family Experiment-class
#'
setClass(Class="Experiment",
representation(
phenotypes="Phenotypes",
proteins="Proteins",
simFinal="matrix",
simNoise="matrix",
simMeans="matrix",
simSampleBiases="matrix",
simOutliers="matrix",
simMissing="matrix",
simulated="logical")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.