suppressPackageStartupMessages({ suppressMessages({ library(BiocStyle) library(htxcomp) library(beeswarm) library(SummarizedExperiment) library(DT) }) })
Comprehensive archiving of genome-scale sequencing experiments is valuable for substantive and methodological progress in multiple domains.
The r Biocpkg("htxcomp")
package provides functions for interacting
with quantifications and metadata for over 180000 sequenced human
transcriptomes.
r Biocpkg("BiocFileCache")
is used to manage access
to a modest collection of metadata about compendium
contents. By default, loadHtxcomp
will
load the cache and establish a connection to
remote HDF5 representation of quantifications.
As of 26 November 2018 the gene level quantifications
are obtained via an HDF Server instance run
by Channing Division of Network Medicine at
Brigham and Women's Hospital.
library(htxcomp) genelev = loadHtxcomp() genelev assay(genelev)
We use crude pattern-matching in the study titles to identify single cell RNA-seq experiments
sing = grep("single.cell", genelev$study_title, ignore.case=TRUE) length(sing)
Now we will determine which studies are involved. We will check out the titles of the single-cell studies to assess the specificity of this approach.
sa = genelev$study_accession[sing] sing2 = sing[-which(duplicated(sa))] length(sing2) datatable(as.data.frame(colData(genelev[,sing2])), options=list(lengthMenu=c(3,5,10,50,100)))
bulk = genelev[,-sing] kpglio = grep("glioblastoma", bulk$study_title, ignore.case=TRUE) glioGene = bulk[,kpglio] glioGene
To acquire numerical values, as.matrix(assay())
is needed.
beeswarm(as.matrix(assay( glioGene["ENSG00000138413.13",1:100])), pwcol=as.numeric(factor(glioGene$study_title[1:100])), ylab="IDH1 expression") legend(.6, 15000, legend=unique(glioGene$study_accession[1:100]), col=1:2, pch=c(1,1))
By setting genesOnly
to FALSE in loadHtxcomp
,
we get a transcript-level version of the compendium.
Note that the number of samples in this version exceeds
that of the gene version by two. There are two
unintended columns in the underlying HDF Cloud
array, with names 'X0' and 'X0.1', that should
be ignored.
txlev = loadHtxcomp(genesOnly=FALSE) txlev
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.