suppressWarnings({ suppressMessages({ suppressPackageStartupMessages({ library(BiocStyle) library(TFutils) library(org.Hs.eg.db) library(GenomicFiles) library(GO.db) library(data.table) library(knitr) library(ggplot2) library(data.table) library(SummarizedExperiment) library(BiocParallel) library(png) library(grid) library(GSEABase) # for tftColl library(gwascat) data(fimoMap) library(dplyr) library(magrittr) }) }) })
A central concern of genome biology is improving understanding of gene transcription. In simple terms, transcription factors (TFs) are proteins that bind to DNA, typically near gene promoter regions. The role of TFs in gene expression variation is of great interest. Progress in deciphering genetic and epigenetic processes that affect TF abundance and function will be essential in clarifying and interpreting gene expression variation patterns and their effects on phenotype. Difficulties of identifying functional binding of TFs, and opportunities for using information of TF binding in systems biology contexts, are reviewed in @Lambert2018 and @Weirauch2014.
This paper describes an R/Bioconductor package called TFutils, which assembles various resources intended to clarify and unify approaches to working with TF concepts in bioinformatic analysis. Computations described in this paper can be carried out with Bioconductor version 3.8. The package can be installed with
# use install.packages("BiocManager") if not already available library(BiocManager) install("TFutils")
In the next section we describe the basic concepts of enumerating and classifying TFs, enumerating TF targets, and representing genome-wide quantification of TF binding affinity. This is followed by a review of the key data structures and functions provided in the package, and an example in cancer informatics.
The present paper does not deal directly with the manipulation or
interpretation of sequence motifs. An excellent Bioconductor
package that synthesizes many approaches to these tasks is
r Biocpkg("universalmotif")
.
Given the importance of the topic, it is not surprising that a number of bioinformatic research groups have published catalogs of transcription factors along with metadata about their features. Standard nomenclature for TFs has yet to be established. Gene symbols, motif sequences, and position-weight matrix catalog entries have all been used as TF identifiers.
In TFutils we have gathered information from four
widely used resources, focusing specifically
on human TFs: Gene Ontology (GO, @Ashburner2000,
in which GO:0003700
is the tag for the molecular
function concept "DNA binding transcription factor activity"),
CISBP (@Weirauch2014), HOCOMOCO (@Kulakovskiy2018),
and the "c3 TFT (transcription factor target)" signature set of MSigDb (@Subramanian15545).
Figure \@ref(fig:lkupset) depicts
the sizes of these
catalogs, measured using counts
of unique HGNC gene symbols.
The enumeration for GO uses Bioconductor's
r Biocpkg("org.Hs.eg.db")
package to
find direct associations from GO:0003700
to HGNC symbols. The enumeration for
MSigDb is heuristic
and involves parsing the gene set identifiers
used in MSigDb
for exact or close matches to HGNC symbols.
For CISBP and HOCOMOCO, the associated web
servers provide easily parsed tabular catalogs.
library(TFutils) library(AnnotationDbi) suppressMessages({ tfdf = AnnotationDbi::select(org.Hs.eg.db::org.Hs.eg.db, keys="GO:0003700", keytype="GO", columns=c("ENTREZID", "SYMBOL")) }) tfdf = tfdf[, c("ENTREZID", "SYMBOL")] TFs_GO = TFCatalog(name="GO.0003700", nativeIds=tfdf$ENTREZID, HGNCmap=tfdf) data(tftColl) data(tftCollMap) TFs_MSIG = TFCatalog(name="MsigDb.TFT", nativeIds=names(tftColl), HGNCmap=data.frame(tftCollMap,stringsAsFactors=FALSE)) data(cisbpTFcat) TFs_CISBP = TFCatalog(name="CISBP.info", nativeIds=cisbpTFcat[,1], HGNCmap = cisbpTFcat) data(hocomoco.mono.sep2018) TFs_HOCO = TFCatalog(name="hocomoco11", nativeIds=hocomoco.mono.sep2018[,1], HGNCmap=hocomoco.mono.sep2018)
suppressPackageStartupMessages({library(UpSetR)}) allhg = keys(org.Hs.eg.db::org.Hs.eg.db, keytype="SYMBOL") #activesym = unique(unlist(list(TFs_GO@HGNCmap[,2], TFs_HOCO@HGNCmap[,2], TFs_MSIG@HGNCmap[,2], TFs_CISBP@HGNCmap[,2]))) activesym = unique(unlist(list(HGNCmap(TFs_GO)[,2], HGNCmap(TFs_HOCO)[,2], HGNCmap(TFs_MSIG)[,2], HGNCmap(TFs_CISBP)[,2]))) use = intersect(allhg, activesym) mymat = matrix(0, nr=length(use), nc=4) rownames(mymat) = use iu = function(x) intersect(x,use) mymat[na.omit(iu(HGNCmap(TFs_GO)[,2])),1] = 1 mymat[na.omit(iu(HGNCmap(TFs_MSIG)[,2])),2] = 1 mymat[na.omit(iu(HGNCmap(TFs_HOCO)[,2])),3] = 1 mymat[na.omit(iu(HGNCmap(TFs_CISBP)[,2])),4] = 1 colnames(mymat) = c("GO", "MSigDb", "HOCO", "CISBP") upset(data.frame(mymat),nsets=4,sets=c("MSigDb", "HOCO", "GO", "CISBP"), keep.order=TRUE, order.by="degree" )
As noted by @Weirauch2014, interpretation of the "function and evolution of DNA sequences" is dependent on the analysis of sequence-specific DNA binding domains. These domains are dynamic and cell-type specific (@Gertz2013). Classifying TFs according to features of the binding domain is an ongoing process of increasing intricacy. Figure \@ref(fig:TFclass) shows excerpts of hierarchies of terms related to TF type derived from GO (on the left) and TFclass (@Wingender2018). There is a disagreement between our enumeration of TFs based on GO in Figure \@ref(fig:lkupset) and the 1919 shown in AmiGO, as the latter includes a broader collection of receptor activities.
knitr::include_graphics('AMIGOplus.png')
Table \@ref(tab:classtab) provides examples of frequently encountered TF classifications in the CISBP and HOCOMOCO catalogs. The numerical components of the HOCOMOCO classes correspond to TFClass subfamilies (@Wingender2018).
Table: (#tab:classtab) Most frequently represented TF classes in CISBP and HOCOMOCO. Entries in columns Nc (Nh) are numbers of distinct TFs annotated to classes in columns CISBP (HOCOMOCO) respectively. Entries are ordered top to bottom by frequency of occurrence. There is no substantive correspondence between entries on a given row. Harmonization of class terminology is beyond the scope of this paper.
library(knitr) cismap = HGNCmap(TFs_CISBP) scis = split(cismap, cismap$HGNC) uf = vapply(scis, function(x) x$Family_Name[1],"character") CISTOP = sort(table(uf),decreasing=TRUE)[1:10] hoc = HGNCmap(TFs_HOCO) shoc = split(hoc, hoc$HGNC) sfam = vapply(shoc, function(x)x$`TF family`[1], "character") HOTOP = sort(table(sfam),decreasing=TRUE)[1:10] kable(data.frame(CISBP=names(CISTOP), Nc=as.numeric(CISTOP), HOCOMOCO=names(HOTOP), Nh=as.numeric(HOTOP)), format="markdown")
The Broad Institute MSigDb (@Subramanian15545) includes
a gene set collection devoted to cataloging TF targets.
We have used Bioconductor's r Biocpkg("GSEABase")
package
to import and serialize the gmt
representation of this
collection.
TFutils::tftColl
Names of TFs for which target sets are assembled are encoded in a systematic way, with underscores separating substrings describing motifs, genes, and versions. Some peculiarity in nomenclature in the MSigDb labels can be observed:
grep("NFK", names(TFutils::tftColl), value=TRUE)
Manual curation will be needed to improve the precision with which MSigDb TF target sets can be associated with specific TFs or motifs.
In this subsection we address representation of putative binding sites. First we illustrate how to represent sequence-based affinity measures and the binding site locations implied by these. We then discuss use of results of ChIP-seq experiments for cell-type-specific binding site enumeration.
Affinity scores based on reference sequence.
The FIMO algorithm of the MEME suite (@Grant2011) was used
to score the human reference genome for TF binding
affinity for r nrow(fimoMap)
motif matrices
to which genes are associated. Full
details are provided in @Sonawane2017. Sixteen (16)
tabix-indexed BED files are lodged in an AWS S3
bucket for illustration purposes.
library(GenomicFiles) data(fimo16) fimo16 head(colData(fimo16))
We harvest scores in a genomic interval of interest
(bound to fimo16
in the rowRanges
assignment
below) using reduceByFile
.
This yields a list with one element per file. Each such
element holds a list of scanTabix
results, one per query range.
library(BiocParallel) register(SerialParam()) # important for macosx? rowRanges(fimo16) = GRanges("chr17", IRanges(38.077e6, 38.084e6)) rr = GenomicFiles::reduceByFile(fimo16, MAP=function(r,f) scanTabix(f, param=r))
scanTabix produces a list of vectors of text strings, which we parse
with data.table::fread
. The resulting tables are then
reduced to a genomic location and -log10 of the p-value derived
from the binding affinity statistic of FIMO in the vicinity
of that location.
asdf = function(x) data.table::fread(paste0(x, collapse="\n"), header=FALSE) gg = lapply(rr, function(x) { tmp = asdf(x[[1]][[1]]) data.frame(loc=tmp$V2, score=-log10(tmp$V7)) }) for (i in 1:length(gg)) gg[[i]]$tf = colData(fimo16)[i,2]
It turns out there are too many distinct TFs to display names individually, so we label the scores with the names of the associated TF families as defined in CISBP.
matchcis = match(colData(fimo16)[,2], cisbpTFcat[,2]) famn = cisbpTFcat[matchcis,]$Family_Name for (i in 1:length(gg)) gg[[i]]$tffam = famn[i] nn = do.call(rbind, gg)
A simple display of predicted TF binding affinity near the gene ORMDL3 is provided in Figure \@ref(fig:finish).
library(ggplot2) myf = function(a=38077296, b=38078938) geom_segment(aes(x=a, xend=b, y=2.85, yend=2.85, colour="[ORMDL3]")) ggplot(nn, aes(x=loc,y=score,group=tffam, colour=tffam)) + geom_point() + myf() + myf(38079365, 38079516) + myf(38080283, 38080478) + myf(38081008, 38081058) + myf(38081422, 38081624) + myf(38081876, 38083094) + myf(38083737, 38083884) + ylab("-log10 FIMO p-value") + xlab("position on chr17, hg19")
TF binding predictions based on ChIP-seq data from ENCODE.
The ENCODE project provides BED-formatted
reports on ChIP-seq experiments for many
combinations of cell type and DNA-binding
factors. TFutils includes a table encode690
that gives information on 690 experiments involving
pairs formed from
r length(table(TFutils::encode690$cell))
cell lines and
r length(table(TFutils::encode690$target))
TFs for which
results have been recorded as GRanges
instances that can be
acquired with the r Biocpkg("AnnotationHub")
package.
Positional relationships between cell-type specific binding
sites and genomic features can be investigated. An
illustration is given in Figure \@ref(fig:lkbi), in which
is it suggested that in HepG2 cells, CEBPB exhibits a distinctive
pattern of binding in the vicinity of ORMDL3.
pp = readPNG("ormdl3CEBPB.png") grid.raster(pp)
We have compared enumerations of human transcription factors
by different projects, provided access to two forms of
binding domain classification, and illustrated the use
of cloud-resident genome-wide binding predictions.
In the next section we review selected details of data structures
and methods of the r Biocpkg("TFutils")
package.
The TFutils package is designed to lower barriers to usage of key findings of TF biology in human genome research. TFutils is supplied as a conventional R package distributed with, and making use of, the Bioconductor software ecosystem. TFutils includes ready-to-use reference data, tools for visualizing binding sites, and tools that simplify integrative use of TF binding information with GWAS findings.
Catalogs. Two reference resources have been collected into
the TFutils package as data.frame instances. These
are cisbpTFcat
(CISBP: r nrow(cisbpTFcat)
x r ncol(cisbpTFcat)
),
and
hocomoco.mono.sep2018
(mononucleotide models, full catalog,
r nrow(hocomoco.mono.sep2018)
x r ncol(hocomoco.mono.sep2018)
). These
data.frames are snapshots of the CISBP and HOCOMOCO catalogs
Indexed BED in AWS S3. As described above fimo16
provides programmatic access to FIMO scores for 16 TFs, using
the r Biocpkg("GenomicFiles")
protocol.
Annotated reference to ENCODE ChIP-seq results.
encode690
simplifies programmatic access to TF:cell-line
combinations available in Bioconductor r Biocpkg("AnnotationHub")
.
TF targets enumerated in MsigDb. The c3-TFT (TF targets) subset
from MSigDb is provided as a GeneSetCollection instance as
defined in r Biocpkg("GSEABase")
.
Illustrative GWAS records. The full EBI/EMBL GWAS catalog
is available in the r Biocpkg("gwascat")
package; for convenience,
an excerpt focusing on chromosome 17 is supplied with TFutils
as gwascat_hg19_chr17
.
Interactive enumeration of TF targets implicated in GWAS.
The TFtargs
function runs a shiny app that permits
selection of a TF in the nomenclature of the MSigDb
c3/TFT gene set collection.
The app will search an object
provided by the r Biocpkg("gwascat")
package for
references in the MAPPED_GENE
field that match
the targets of the selected TF.
Figure \@ref(fig:lktarapp)
gives an illustration.
pp = readPNG("tfTargsApp.png") grid.raster(pp)
The TFCatalog S4 class. Reference catalogs for TF biology are structured with the
TFCatalog
S4 class. Two essential components for
managing a catalog are the native TF identifier
for the catalog and the HGNC gene symbol typically
used to name the TF. The TFCatalog
class includes
a name field to name the catalog, and
a character vector with elements comprised of the
native identifiers for catalogued TFs.
For example, CISBP uses T004843_1.02
to refer
to motifs associated with gene TFAP2B. There
are five such motifs, three derived from SELEX,
one from Transfac, and one from Hocomoco.
A data.frame
instance that has an
obligatory column named 'HGNC' can include any collection
of fields that offer metadata about the TF in the specified
catalog. Here is how we construct and view a TFCatalog object
using the CISBP reference data.
data(cisbpTFcat) TFs_CISBP = TFCatalog(name="CISBP.info", nativeIds=cisbpTFcat[,1], HGNCmap = cisbpTFcat) TFs_CISBP
In this section we consider applications of the tools in genetic epidemiology. First we look for TFs that may harbor variants associated with traits in the EBI GWAS catalog. Then we show how to enumerate traits associated with targets of a selected TF.
TFs that are direct GWAS hits for a given trait. directHitsInCISBP
accepts
a string naming a trait , and returns a data.frame
of TFs identified as "mapped genes" for the trait,
with their TF "family name".
library(dplyr) library(magrittr) library(gwascat) #data(ebicat37) load(system.file("legacy/ebicat37.rda", package="gwascat")) directHitsInCISBP("Rheumatoid arthritis", ebicat37)
Traits mapped to genes that are targets of a given TF
topTraitsOfTargets
will acquire the targets of a selected
TF, check for hits in these genes in a given GWAS catalog instance, and
tabulate the most commonly reported traits.
tt = topTraitsOfTargets("MTF1", TFutils::tftColl, ebicat37) head(tt) table(tt[,1])
Sources and consequences of variations in DNA transcription are fundamental problems for cell biology, and the projects we have made use of for cataloging transcription factors are at the boundaries of current knowledge.
It is noteworthy that the four resources used for Figure \@ref(fig:lkupset) agree on names of only 119 TFs. The fact that CISBP distinguishes 475 TFs that are not identified in any other source should be better understood. We observe that the ascription of TF status to AHRR is based on its sharing motifs with AHR (see \url{http://cisbp.ccbr.utoronto.ca/TFreport.php?searchTF=T014165_1.02}).
Figure \@ref(fig:TFclass) and Table \@ref(tab:classtab) show that the classification of TFs is now fairly elaborate. Use of the precise terminology of the TFClass system to label TFs of interest at present relies on associations provided with the HOCOMOCO catalog.
As population studies in genomic and genetic epidemiology
grow in size and scope, principles for organizing and
prioritizing loci associated with phenotypes of interest
are urgently needed. Figure \@ref(fig:lktarapp) shows
that loci associated with
phenotypes related to kidney function, lung function,
and IL-8 levels are potentially unified through the fact
that the GWAS hits are connected with genes identified
as targets of VDR (vitamin D receptor). This example
limited attention to hits on chromosome 17; the TFtargs
tool
permits \textit{ad libitum} exploration of
phenotype-locus-gene-TF associations.
Our hope is that
the tools and resources collected in TFutils will foster
systematic development of evidence-based mechanistic
network models for transcription regulation in human
disease contexts, thereby
contributing to the development of personalized genomic medicine.
Support for the development of this software was provided by NIH grants U01 CA214846 (Carey, PI), U24 CA180996 (Morgan, PI), Chan Zuckerberg Initiative DAF 2018-183436 (Carey, PI), and R01 NHLBI HL118455 (Raby, PI).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.