knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
Download the data as a list:
library(curatedMetagenomicData) esetlist <- list(taxa = ZellerG_2014.metaphlan_bugs_list.stool()[, 1:10], pathways = ZellerG_2014.pathabundance_relab.stool()) ## species and strain-level taxa only: esetlist$taxa <- esetlist$taxa[grep("s__", rownames(esetlist$taxa)), ] ## eliminate taxa-specific pathway contributions (only total pathway abundances): esetlist$pathways <- esetlist$pathways[grep("g__", rownames(esetlist$pathways), invert=TRUE), ]
Then create the MultiAssayExperiment:
library(MultiAssayExperiment) mae = MultiAssayExperiment(experiments=esetlist, colData=colData(esetlist[[2]])) mae rownames(mae)
library(omicade4) maesub = mae[, mae$disease %in% c("cancer", "large_adenoma", "small_adenoma"), ] ##Get rid of rows that are all zero: for (i in 1:length(experiments(maesub))){ experiments(maesub)[[i]] <- experiments(maesub)[[i]][apply(assay(maesub)[[i]], 1, function(x) sum(x) > 0), ] } mcoin = mcia(assay(maesub)) plot(mcoin, phenovec=maesub$disease, sample.lab=FALSE)
Error, "system is computationally singular"
library(iClusterPlus) datasets = assay(maesub) datasets = lapply(datasets, t) iclus = iCluster(datasets=datasets, k=5, lambda=c(0.2, 0.2)) plotiCluster(fit=iclus, label=maesub$disease)
library(PMA) mae2 <- mergeReplicates(intersectColumns(mae)) mycca = PMA::CCA(x=t(assay(mae)[[1]]), z=t(assay(mae)[[2]])) mycca
library(PMA) library(made4) library(MCIA) ##library(Rtopper) #gene set analysis
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.