library = function(...) { # QUIET DOWN MESSAGES ON PACKAGE LOADING libstats = function(inisess, newsess) { inibase = inisess$basePkgs # unchanging? inioth = names(inisess$otherPkgs) newbase = newsess$basePkgs newoth = names(newsess$otherPkgs) iniatt = length(unique(c(inibase,inioth))) newatt = length(unique(c(newbase,newoth))) addatt = newatt-iniatt inilo = names(inisess$loadedOnly) newlo = names(newsess$loadedOnly) addlo = length(setdiff(newlo, inilo)) c(addatt=addatt, addlo=addlo) } inisess = sessionInfo() suppressPackageStartupMessages({ libdata = base::library(...) newsess = sessionInfo() lstats = libstats(inisess=inisess, newsess=newsess) message(sprintf("%d/%d packages newly attached/loaded, see sessionInfo() for details.", lstats["addatt"], lstats["addlo"])) invisible(NULL) }) } # END OF LIB REWRITE library(BiocRnaHap) library(DT) library(ggplot2) library(dplyr) library(geuvPack)
This package is devoted to systematically organizing results from applications of phaser (@Castel2016) to RNA-seq runs.
This table illustrates basic output of phaser. We get a small number of records with proposed haplotypes composed of 2-5 SNPs.
# library(BiocRnaHap) # library(DT) # library(geuvPack) # library(dplyr) # library(ggplot2) subto4 = subset(NA06986_rnahaps, variants >=2 & variants <= 5) subto4 = subto4[order(subto4$reads_total, decreasing=TRUE),] datatable(subto4[1:100,])
We sorted the table rows by 'reads_total' after limiting for rows with 3-4 variants. Note that this vignette reports just a slice of the table so restricted.
We will obtain a view of 1000 genomes SNP calls and examine
distributions of identified 'compound heterozygotes'.
We picked a group of three SNP that have 373 total reads.
look1kg
will use the Ensembl REST API to get SNP
locations on GRCh38, and by default will lift over to
hg19.
myv = c("rs2227312", "rs2227313", "rs4870") lk1 = look1kg(myv) class(lk1) glk = geno(lk1) glk[,1:6]
Of interest is the collection of 3-SNP configurations.
table(glk$GT[1,], glk$GT[2,], glk$GT[3,])
geneToCheck = "RCAN3" # 'close' to SNPs glkg = glk$GT if (!exists("geuFPKM")) data(geuFPKM) mm = geuFPKM[, intersect(colnames(glkg), colnames(geuFPKM))] mm elem = apply(glkg,2,paste, collapse=":") gind = grep("RCAN3", rowData(geuFPKM)$gene_name) quant = as.numeric(log(assay(mm[gind,])+1)) newdf = data.frame(quant=quant, hap=elem[colnames(mm)], stringsAsFactors=FALSE) squant = split(quant, elem[colnames(mm)]) mor = sapply(squant, median) hc = newdf %>% select(hap) %>% group_by(hap) %>% summarise(n=n()) okh = hc[hc$n > 2, 1] newdf = newdf[newdf$hap %in% okh$hap,] gg = ggplot(newdf, aes(x=factor(hap), y=quant, colour=factor(hap))) + geom_boxplot() + geom_point() + ggtitle("RCAN expression") + xlab(paste0(myv, collapse=", ")) gg
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.