library(amplican) library(ggplot2) alignments <- data.table::fread(params$alignments) data.table::setDF(alignments) config <- data.frame(data.table::fread(params$config_summary)) height <- plot_height(length(unique(config$guideRNA)))
Read distribution plot - plot shows number of reads assigned during read grouping
Filtered Reads - plot shows percentage of assigned reads that have been recognized as PRIMER DIMERS or filtered based on low alignment score
Edit rates - plot gives overview of percentage of reads (not filtered as PRIMER DIMER) that have edits
Frameshift - plot shows what percentage of reads have frameshift
Read heterogeneity plot - shows what is the share of each of the unique reads in total count of all reads. The more yellow each row, the less heterogeneity in the reads, more black means reads don't repeat often and are unique
ggplot(data = config, aes(x = as.factor(guideRNA), y = log10(Reads + 1), order = guideRNA, fill = guideRNA)) + geom_boxplot() + ylab('Number of reads + 1, log10 scaled') + xlab('guideRNA') + theme(legend.position = 'none', axis.text = element_text(size = 12), axis.title = element_text(size = 14, face = 'bold')) + coord_flip()
config$F_percentage <- (config$PRIMER_DIMER + config$Low_Score) * 100/config$Reads config$F_percentage[is.nan(config$F_percentage)] <- 0 ggplot(data = config, aes(x = as.factor(guideRNA), y = F_percentage, order = guideRNA, fill = guideRNA)) + geom_boxplot() + xlab('guideRNA') + ylab('Percentage of filtered reads') + theme(axis.text = element_text(size=12), axis.title = element_text(size=14, face = 'bold'), legend.position = 'none') + ylim(0, 100) + coord_flip()
config$edit_percentage <- config$Reads_Edited * 100/config$Reads_Filtered config$edit_percentage[is.nan(config$edit_percentage)] <- 0 ggplot(data = config, aes(x = as.factor(guideRNA), y = edit_percentage, order = guideRNA, fill = guideRNA)) + geom_boxplot() + xlab('guideRNA') + ylab('Percentage of reads (not filtered) that have edits') + theme(axis.text = element_text(size=12), axis.title = element_text(size=14, face = 'bold'), legend.position = 'None') + ylim(0,100) + coord_flip()
config$frameshift_percentage <- config$Reads_Frameshifted * 100/config$Reads_Filtered config$frameshift_percentage[is.nan(config$frameshift_percentage)] <- 0 ggplot(data = config, aes(x = as.factor(guideRNA), y = frameshift_percentage, order = guideRNA, fill = guideRNA)) + geom_boxplot() + xlab('guideRNA') + ylab('Percentage of reads (not filtered) that have frameshift') + theme(axis.text = element_text(size=12), axis.title = element_text(size=14,face = 'bold'), legend.position = 'None') + ylim(0, 100) + coord_flip()
plot_heterogeneity(alignments, config, level = 'guideRNA')
alignments <- alignments[alignments$consensus & alignments$overlaps, ] alignments$strand <- "+" # strand does not matter after consensus filtering src = sapply(unique(config$guideRNA), function(i) { knitr::knit_expand(text = c( "## Guide {{i}} \n", "### Deletions \n", paste('```r}, echo = F, results = "asis", ', 'message=F, warning=F}', collapse = ''), 'amplican::metaplot_deletions(alignments, config, "guideRNA", "{{i}}")', '```\n', "### Insertions", paste('```r}, echo = F, results = "asis", ', 'message=F, warning=F}', collapse = ''), 'amplican::metaplot_insertions(alignments, config, "guideRNA", "{{i}}")', '```\n', "### Mismatches", paste('```r}, echo = F, results = "asis", ', 'message=F, warning=F}', collapse = ''), 'amplican::metaplot_mismatches(alignments, config, "guideRNA", "{{i}}")', '```\n')) }) # knit the source res = knitr::knit_child(text = src, quiet = TRUE) cat(res, sep = '\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.